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Abstract

Geographical information systems rely on the concept of topological spaces for analysing
the level of interaction between two or more geographical entities and determining the extent of
each. In real life, belonging of an element in a set is not just affirmation or denial, but rather a
matter of degree. Zadeh introduced ‘fuzziness’ which was adapted into fuzzy topology first by
Chang. Spatial relations introduced by Egenhofer in the context of application of topology in
GIS can be extended in various ways between fuzzy regions. These ideas have a wide range of
application in Geographical Information Systems, in forecasting floods, preparing terrain maps
for defence etc. This report covers a brief introduction to fuzzy set theory followed by notions of
fuzzy topology and how they can improve over application of crisp topology in GIS. Extension
of concepts from general topology to fuzzy sets have been explored with an ultimate aim of
discussing in brief the concepts that are prerequisite to application of fuzzy topology to GIS by
finding topological invariants and spatial relations for simple fuzzy regions.

The collected geographical data is often wanted to retain its innate fuzziness for our study,
nonetheless a strict boundary existing between a set and its complement, or its interior and
exterior, makes things a lot easier. An example might be the making of jurisdictory maps for
coastal or delta regions, where we need to demarcate between land and water and make an idea
about the area under a constituency or police station. Coast of a fuzzy set has been defined,
along with possible alternative definitions, which in a way is shown to solve this purpose also.
Further, various properties of Coast has been studied along with its distinctness of definition
and purpose from fuzzy boundary.
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Chapter 1

Introduction to Fuzzy Topology

1.1 Backdrop
Heterogeneous data of varied origin and accuracy include some level of uncertainty, that can
be viewed as as a measure of differences between data and measurement that is assigned by
the standard user to be received in course of accurate study of reality. Therefore, there is an
increasing need for information with uncertainty-based GIS. The geographical data recorded in
a GIS represent some phenomena. For example, to determine the true class of the soil is a near-
impossibility while the definition of classes of soil are mostly vague or inaccurate. Therefore, a
more realistic view of geographical measurement than the concept of “error” is the concept of
“uncertainty”, whose formulation in the fuzzy form reduces the possibility of getting solutions
that are incompatible in the calculation and optimization.

While trying to deal mathematically with the problems in the world, one comes across
‘organized complexity’ [Warren Waver, 1948] or non-linear systems with a large number of richly-
interacting components, which are non-deterministic, but not as a consequnece of randomness
that can justify the use of statistical averages. In the 1960s, approaches to this end began to
be explored, among which L. A. Zadeh’s paper is certainly worth mentioning. The idea can
be traced back to 1937 by American philosopher Max Black. In that paper, Zadeh broke away
from Aristotelian two-valued logic and introduced a “fuzzy” set, where membership is not just
subject to of affirmation or denial, but rather is a matter of degree. Egerhofer and Franzosa
[6] introduced a model of spatial relations based on point-set topological notions of interior,
closure and boundary. An adaptation of that for geographical data represented by fuzzy regions
had been proposed by Tang and Kainz [15], where the binary topological relations have been
formulated as 3 × 3 and 4 × 4 matrices.

1.2 Set terminology
Definition 1.2.1. Let Ω be a space of points where a generic element is denoted by x. A fuzzy
set (class) A ⊆ Ω is characterized by a membership (characteristic) function µA : Ω → [0, 1]
with the value of µA(x) denoting the grade of membership of x in A,

A = {(x, µA(x)) | x ∈ Ω} . (1.1)

When the membership function has value 1 or 0 this is called crisp set whose membership
function takes only 2 values.

Definition 1.2.2. 1. A is an empty fuzzy set [denoted by 0Ω] in Ω iff µA(x) = 0 ∀ x ∈ Ω.

2. Two fuzzy sets A and B are equal, i.e., A = B iff µA(x) = µB(x) ∀ x ∈ Ω.
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3. Complement of a fuzzy set A is denoted by AC and is defined by µAC = 1 − µA.

4. A fuzzy set A is contained in a fuzzy set B or A is a subset of B or A is smaller than or
equal to B iff µA(x) ≤ µB(x) ∀x ∈ Ω.

Definition 1.2.3. Let (A, µA) and (B, µB) be two fuzzy sets.

1. Their union is a fuzzy set C = A ∪ B whose membership function µC is given by µC(x) =
max {µA(x), µB(x)} ∀ x ∈ Ω, or, µC = µA ∨ µB. Alternatively, The union of fuzzy sets
A and B is the smallest fuzzy set that covers both A and B.

2. Intersection C = A ∩ B has membership function µC = min {µA, µB} or, µC = µA ∧ µB.
Alternatively, the intersection A ∩ B is the largest fuzzy set which is contained in both A
and B.

Two fuzzy sets A and B are disjoint if A ∩ B is empty.
De Morgan’s laws [(A ∪ B)C = AC ∩ BC , (A ∩ B)C = AC ∪ BC ] and Distributive laws [C ∩

(A ∪ B) = (C ∩ A)∪(C ∩ B), C ∪(A ∩ B) = (C ∪ A)∩(C ∪ B)] hold for fuzzy sets. Essentially,
fuzzy sets in Ω constitute a distributive lattice with a 0 and 1 [1]. Law of Contradiction
[A ∩ AC = 0Ω] and Law of Excluded Middle [A ∪ AC = Ω] do not hold for fuzzy sets since
µA∩AC = min {µA, 1 − µA} ̸= 0 and µA∪AC = max {µA, 1 − µA} ̸= 1 for fuzzy sets.

1.3 Fuzzy sets induced by mappings

Let R : (X, Y ) → [0, 1]. The membership function µR gives the degree of relation of ordered
pair (x, y) ∈ (X, Y ). Let T be a mapping from space X to space Y , and let us consider fuzzy
set B ⊆ Y and A = T −1(B) ⊆ X. The membership function for B is defined by:

µB(y) =

 max
x∈T −1(y)

µA(x), y ∈ Y if T −1 {y} ̸= ∅,

0 if T −1 {y} = ∅.
(1.2)

1.4 Partition

It is assumed from now on that Ω is a real Euclidean space En.

Definition 1.4.1. The crisp set containing only elements belonging with a grade of membership
of at least α to a fuzzy set in question, i.e., Γα(S) = {x ∈ Ω | µS(x) ≥ α}. This is also called the
weak α-cut of S. The strong α-cut of S is defined as σα(S) = {x ∈ Ω | µS(x) > α}. σ0(S) is
called the support of S. It is the crisp set of all elements of Ω which have non-zero membership
functions with respect to S.

Definition 1.4.2. A fuzzy set A is said to be bounded iff the sets Γα = {x | µA(x) ≥ α} are
bounded in norm ∀ α > 0, i.e., ∀α > 0 ∃ some finite R(α) ∋ ∥x∥ ≤ R(α) ∀ x ∈ Γα.

1.5 Fuzzy Topology: Open sets, neighbourhoods and interior
points

Definition 1.5.1. Let τ be a family of fuzzy sets in X such that

1. 0X , 1X ∈ τ ;

2. A, B ∈ τ =⇒ A ∩ B ∈ τ ;
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3. Ai ∈ τ ∀ i ∈ I =⇒
⋃
i∈I

Ai ∈ τ .

Then τ is called a fuzzy topology for X and (X, τ) is called a fuzzy topological space or fts in
short. Condition (1) gets redundant.

Definition 1.5.2. A set A is τ -open if A ∈ τ , while it is τ -closed if and only if AC is τ -open.
[3]

For fuzzy sets,
it makes more sense to think of neighbourhoods of a fuzzy set itself (which contains points

to the extent of the values of their membership functions).

Definition 1.5.3. A fuzzy set U ⊆ X in an fts (X, τ) is said to be a neighbourhood (nbhd for
short) of a fuzzy set A ⊆ X if and only if there exists a τ -open fuzzy set O such that A ⊆ O ⊆ U .
A neighbourhood system of a fuzzy set is the family of all its neighbourhoods.

Definition 1.5.4. Let A and B be fuzzy sets in an fts (X, τ) such that A ⊃ B. Then, B is an
interior fuzzy set of A if and only if A is a nbhd of B. The interior of A is the union of all
interior fuzzy sets of A.

Definition 1.5.5. The membership function of a fuzzy point takes value 0 ∀ y ∈ X except one,
say x ∈ X. It is denoted by xλ (0 < λ ≤ 1), where µxλ

(x) = λ, and x is called its support.

Definition 1.5.6. A function f from an fts (X, τ) to an fts (Y, υ) is said to be F-continuous if
and only if f−1 [Gυ-open] is τ -open ∀ G ∈ υ.

Definition 1.5.7. A fuzzy homeomorphism is an F-continuous injective map from an fts X
onto an fts Y , such that the inverse of the map is F-continous as well. In that case X and Y
are said to be F-homeomorphic and each is a fuzzy homeomorph of the other.

Definition 1.5.8. [15, 2.5] A fuzzy relation is said to be a topological relation if it is preserved
under a fuzzy homeomorphism of its embedding fts.

1.6 Induced fuzzy topology

Let (X, τ) be a crisp topological space. Let A be a fuzzy set in X.

Definition 1.6.1. A is closed if whenever there exists a net (xα)α∈J → x ∈ X, then µA(x) ≥
lim supα∈J µA (xα).

But this is precisely the condition that the mapping µA : X → R is upper semicontinuous,
i.e., 1 − µA, the membership function for “open” AC is lower semicontinuous. Thus,

Definition 1.6.2. An induced fuzzy topology on (X, τ) is the collection of all lower semicon-
tinuous fuzzy sets in X. It is denoted by F (τ).

Proposition 1.6.3. [18, Proposition 3.2] F (τ) thus defined will be a fuzzy topology for X.

Proposition 1.6.4 (F-continuity in induced fuzzy sets). [18, Proposition 3.4] If (X, τ), (Y, υ)
be topological spaces, then a mapping T : (X, F (τ)) → (Y, F (υ)) is F-continuous if and only of
T : (X, τ) → (Y, υ) is continuous.
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1.7 Separation and Connectedness
The fact whether two fuzzy sets are separated or connected plays a vital role in determining
the extent of interaction between the respective regions in the study of geography. For that,
definitions of separatedness and connectedness in crisp topology can be variously extended to
fuzzy sets, as in [15].

Definition 1.7.1. 1. Fuzzy sets A, B in fts (X, τ) are separated iff ∃ U, V ∈ τ ∋ U ⊇
A, V ⊇ B, U ∩ B = V ∩ A = 0X .

2. Fuzzy sets A, B in fts (X, τ) are Q-separated iff ∃ H, K ∋ HC , KC ∈ τ ; H ⊇ A, K ⊇
B, H ∩ B = K ∩ A = 0X .

Definition 1.7.2. 1. A fuzzy set A is said to be open-connected if ∄ separated C, D ∋ A =
C ∪ D.

2. A fuzzy set A is said to be closed-connected if ∄ Q-separated C, D ∋ A = C ∪ D.

3. A fuzzy set A is said to be double-connected if it is both open- and closed-connected.
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Chapter 2

Spatial relations and application to
GIS

2.1 Spatial relations among crisp sets aided by point-set topol-
ogy

Point-set topological notion of interior of a set A, A◦ refers to the collection of those points x
for which ∃ Gopen

x ∋ x ∈ Gx ⊆ A. The closure of A, denoted by A is the intersection of all the
closed sets containing A [10]. For A ⊂ X, the boundary ∂A is defined as ∂A = A ∩ X − A [11].

Proposition 2.1.1. [6, Propositions 3.1, 3.2] A◦ ∩ ∂A = ∅, Y ◦ ∪ ∂Y = Y .

A set A is said to be connected if it is not a union of two disjoint non-empty open sets, and
separated in the contrary case. Z ⊆ X separates X is X and X − Z is disconnected [6].

Proposition 2.1.2. [6, Propositions 3.4] For Y ⊂ X such that Y ◦ ̸= ∅ and Y ̸= X, Y ◦ and
X − Y form a separation of X − ∂Y , ∂Y thus separating X.

Let A, B ⊆ X. A topological spatial relation between A and B is described by a 4-tuple of
values of topological invariants (i.e., preserved under homeomorphism, or continuous bijective
map with continuous inverse) associated to each of the 4 sets ∂A ∩ ∂B (boundary-boundary
intersection), A◦ ∩ B◦ (interior-interior intersection), ∂A ∩ B◦ (boundary-interior intersection),
A◦ ∩ ∂B (interior-boundary intersection) respectively.

Definition 2.1.3. A spatial region in a connected topological space X is a (∅ ̸=) Aconnected ⊂
X ∋ A = A◦.

For a spatial region, ∂A ̸= ∅ [6, Proposition 5.2].
The 16 exhaustive spatial relations between two sets on a plane are all feasible, but it can be

proved that (∅,∅,∅,∅), (
⊙

,∅,∅,∅), (
⊙

,
⊙

,∅,∅), (∅,
⊙

,
⊙

,∅), (
⊙

,
⊙

,
⊙

,∅), (∅,
⊙

,∅,
⊙

),
(
⊙

,
⊙

,∅,
⊙

), (∅,
⊙

,
⊙

,
⊙

), (
⊙

,
⊙

,
⊙

,
⊙

) are possible for spatial regions [6, Proposition 5.3].
[The symbol

⊙
stands for a non-empty set.]

2.2 Topological invariants in a fuzzy set

Due to shortcomings of the crisp model used in GIS while dealing with the phenomena of the
real world, fuzzy methods have been introduced.

Definition 2.2.1. Properties of fuzzy sets that remain invariant under fuzzy homeomorphism,
are called topological properties.
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The following model for describing topological spatial relations between two regions repre-
sented by fuzzy sets has been based on a consideration of the intersections of cores, fringes and
outers or cores, b-closures, c-boundaries and outers of two sets A and B, which are henceforth
defined and proved to be topological properties.

Definition 2.2.2. (B1) [17] The fuzzy boundary of a fuzzy set A is the infimum of all closed
fuzzy sets D in X such that µD(y) ≥ µA(y) ∀ y ∈

{
x ∈ X | µA(x) ∧ µ

AC (x) > 0
}

.

(B2) [12] The fuzzy boundary of a fuzzy set A is defined as: ∂A = A ∩ AC .

(B2′) [2] The membership function of the fuzzy boundary ∂A of A is defined as µ∂A (x, y) =
2 min {µA (x, y) , 1 − µA (x, y)}, where the factor 2 normalizes the membership values.

(B3) [5] The boundary of A is the infimum of all closed fuzzy sets B in X such that B(x) ≥
A(x) ∀ x ∈ X ∋ A(x) − A◦(x) > 0.

(B4) [8] ∂A = ∨
{

xβ | β ≤ A(x), β > A
∫

(x)
}

.

(B5) [9] ∂A =
(
A
)◦

∧ A◦.

Subsets of the boundary ∂A:[15]

• c-boundary, ∂cA =
{
xλ ∈ ∂A : µ∂A(x) = µA(x)

}
;

• i-boundary, ∂iA =
{
xλ ∈ ∂A : µ∂A(x) < µA(x)

}
.

Subsets of the closure A:

• i-closure, A± =
{

xλ ∈ A | µ∂A(x) < µA(x)
}

;

• c-closure, A∓ =
{

xλ ∈ A | µ∂A(x) = µA(x)
}

.

Crisp subsets:

• Core, A⊕ = {xλ ∈ X | µA◦(x) = 1} ⊆ A◦;

• Outer, A= = {xλ ∈ Ae | µAe(x) = 1} ⊆ Ae, where Ae =
(
AC
)◦

.

Some more invariants:

• b-closure of A in the fts, A⊥ = A± − A⊕;

• fringe of A, ℓA = ∂cA ∪ A⊥.

Theorem 2.2.3. [15, Propositions 4.9, 4.10]

1. A fuzzy homeomorphism is boundary-preserving, i.e., f (∂A) = ∂f(A);

2. The following are topological properties: (i) c-boundary, (ii) i-boundary, (iii) c-closure,
(iv) i-closure, (v) b-closure, (vi) core, (vii) outer.
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2.3 Fuzzy region

Definition 2.3.1. A fuzzy region A is represented as A = {(x, y) , µA (x, y)} where (x, y) ∈ R2

and µA : R2 → [0, 1].

Definition 2.3.2. A simple fuzzy region is a non-empty subset of an fts which is a double
connected regular closed set whose core is the interior of a simple closed region, the i-closure
is a non-empty double connected regular open set, the interior of the b-closure is a non-empty
double-connected regular open set, the c-boundary is a non-empty double-connected closed set
and the outer is a non-empty double-connected open set. Various subsets of a simple region are
shown in Figure 1.

2.4 Topological relations between two simple regions

As in [4] and [6] for crisp topological spaces, for description of topological relations between 2
fuzzy sets in an fts, A and B, one can use the 9-intersection matrix or the 4 × 4 intersection
matrix [15, 16].

I9 =

 A⊕ ∩ B⊕ A⊕ ∩ ℓB A⊕ ∩ B=

ℓA ∩ B⊕ ℓA ∩ ℓB ℓA ∩ B=

A= ∩ B⊕ A= ∩ ℓB A= ∩ B=

 , (2.1)

I4×4 =


A⊕ ∩ B⊕ A⊕ ∩ B⊥ A⊕ ∩ ∂cB A⊕ ∩ B=

A⊥ ∩ B⊕ A⊥ ∩ B⊥ A⊥ ∩ ∂cB A⊥ ∩ B=

∂cA ∩ B⊕ ∂cA ∩ B⊥ ∂cA ∩ ∂cB ∂cA ∩ B=

A= ∩ B⊕ A= ∩ B⊥ A= ∩ ∂cB A= ∩ B=

 . (2.2)

Figure 2.1: A pictorial example of a simple region

Of all the 29 = 512 relations possible between 2 fuzzy sets from the 9-intersection matrix,
only 44 can happen for a simple fuzzy region. With the same restrictions imposed, of the
216 = 65536 relations derived from the 4 × 4 intersection matrix, only 152 remain feasible for a
simple fuzzy region.

Since processing spatial information often involves dealing with characteristics which are
inexact in a way, dealing with non-exact objects has quite some importance in geographical
information systems (GIS). The difficulty in extending the methods of crisp topology to a fuzzy
domain lies in choosing the most apt and sensible generalization among the large number of
possible approaches.
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2.5 Entropy
We define F(X) as the class of all fuzzy sets on X and P(X) be the class of all crisp sets on
X. Liu Xuechung in [19] defined this set

Definition 2.5.1.
[

1
2

]
X

∈ F(X) ∋ µ[ 1
2 ]

X

(x) = 1
2 ∀ x ∈ X.

Let us define F ⊆ F(X) ∋

1. P(X) ⊂ F ,

2.
[

1
2

]
X

∈ F ,

3. A, B ∈ F =⇒ A ∪ B ∈ F , AC ∈ F .

Definition 2.5.2. A real function e : F → R+ s called an entropy on F if e has the following
properties

1. e(D) = 0 ∀ D ∈ P(x);

2. e
([

1
2

]
X

)
= maxA∈F e(A);

3. ∀ A, B ∈ F , and either µB(x) ≥ µA(x) ≥ 1
2 or µB(x) ≤ µA(x) ≤ 1

2 , then e(A) ≥ e(B);

4. e
(
AC
)

= e(A) ∀ A ∈ F .

Example. Let X = {x1, x2, . . . , xn}. For any A ∈ F(X), Â ∈ P(X) ∋

µÂ(x) =
{

1 when µA(x) > 1
2

0 when µA(x) ≤ 1
2

and e′(A) =
(

n∑
i=1

∣∣µA (xi) − µÂ (xi)
∣∣ω) 1

ω

∀ A ∈ F(X). Then e′ is an entropy on F(X), where

ω ≥ 1.

Definition 2.5.3. Further, if an entropy e on F satisfies e
([

1
2

]
X

)
= 1, then e is called a

normal entropy on F .

Result 2.5.4. Let e be an entropy pf F , then ê given by ê (A) = e(A)
e
([

1
2

]
X

) ∀ A ∈ F is a normal

entropy on F .[
1
2

]
X

is used in deriving core results regarding entropy. In the next chapter, a similar
subset of a fuzzy set has been defined and its properties have been studied in detail with sole
attention. Before that, a certain aspect of another work is showed in brief, that uses similar
sets for computation.

2.6 Distribution of SARS among people in a community
In [14], the set A1/2 has been defined such that

µA1/2(x) =
{

µA(x) if µA(x) > 1
2 ;

0 otherwise.
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Using concepts of quasi-difference and quasi-coincidents, a seven-tupled topological relation was
defined for two fuzzy objects, to be used in GIS to quantify the effect of one fuzzy entity on
another.

To detect the distribution of SARS in a community by tracing the path of an affected
person, investigating the effect of that person as well as an infected region on the community,
five topologically invariant components:

1. (A ∩ B)µA+µB≤1,

2.
⋂

(A ∩ B)µA or µB≤0.5
µA+µB>1

3.
⋂(

A ∩ BC
)µA and µB>0.5

µA+µB>1
,

4.
⋂(

AC ∩ B
)µA and µB>0.5

µA+µB>1
,

5. {x ∈ X|µA(x) = µB(x)}

were used, using the idea of a set exclusively containing those points whose membership is 1/2.
Study of such a set which can be beneficial to the above procedures, has been conducted in the
next chapter.
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Chapter 3

Coast

3.1 Defining Coast

We next define something we can visualize as a line that demarcates the elements more inclined
towards a fuzzy set than its complement. Motivations behind this explicit study is the use of
related concepts in [19, Example 2.2] and [14] for exploring ideas like entropy and applications
like spread SARS respectively, among others.

Let A be a fuzzy set. The Coast of A is the set of those elements whose degrees of membership
in A are exactly 1

2 . Alternatively, seeing the Coast as a subset of A makes more sense because
there might be elements in A for which the membership function in A is 1

2 . As a third option,
we can define the Coast as a subset of the boundary (B2).

Definition 3.1.1. 1. The first Coast A
(1)
L of a fuzzy set A is defined by the membership

function

µ
A

(1)
L

(x) =
{

µA(x) if µA(x) = 1
2

0 otherwise
.

2. The second Coast A
(2)
L of a fuzzy set A is defined by the membership function

µ
A

(2)
L

(x) =
{

µA(x) if µA(x) = 1
2

0 otherwise
.

3. The third Coast A
(3)
L of a fuzzy set A is defined by the membership function

µ
A

(3)
L

(x) =
{

µ
A∩AC (x) if µ

A∩AC (x) = 1
2

0 otherwise
.

We can also imagine this third definition as a boundary line that makes a line demarcation
out of the fuzzy boundary.

Note that A
(1)
L is the fuzzy set consisting of elements which have same membership function

values in A and AC . We define L = supp
(
A

(1)
L

)
as its crisp version, i.e., L = supp

(
A

(1)
L

)
={

x ∈ X : µA(x) = 1
2

}
.

Definition 3.1.2. The enclosure of a Coast is the interior of
{

x ∈ X : µA(x) ≤ 1
2

}
, i.e.,

In(AL) =
{

B ⊆ X : h(B) ≤ 1
2

}
.
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3.2 Properties of Coast

Result 3.2.1. If A is closed, then A
(1)
L = A

(2)
L .

Proof. If A is closed, then A = A so exactly those elements which have membership 1
2 in A

shall have membership 1
2 in A.

Result 3.2.2. If A is closed, A
(1)
L ⊂ A

(3)
L .

Proof. Let µA(x) = 1
2 =⇒ µA(x) = µA(x) = 1

2 and µ
AC (x) ≥ 1

2 =⇒ µA ∧ µ
AC (x) = 1

2 .

Theorem 3.2.3. If A is clopen, A
(1)
L = A

(3)
L .

Proof. Let x ∈ A
(3)
L =⇒ µ

A∧AC (x) = 1
2 . If µ

AC (x) = 1
2 then µAC (x) = 1

2 [∵ A is open =⇒
AC is closed =⇒ µA(x) = 1

2 . If µA(x) = 1
2 , then µA(x) = 1

2 [∵ A is closed]. ∴ A
(1)
L ⊃ A

(3)
L . The

rest follows from Result 3.2.2.

Theorem 3.2.4. A
(2)
L < A

(3)
L . In particular, if A is clopen, A

(2)
L ⊂ A

(3)
L .

Proof. Follows from the fact that µA(x) = 1
2 =⇒ µA(x) ≤ 1

2 =⇒ µAC (x) ≥ 1
2 .

Theorem 3.2.5. A
(1)
L is a topological invariant.

Proof. Let us consider an I-fuzzy homemorphism f→ :
(
IX , δ

)
→
(
IY , µ

)
. Then, ∀ y ∈

Y ∃ unique x0 ∈ X ∋ f (x0) = y. Thus, f→ (µA) (y) = ∨ {µA(x) : x ∈ X ∋ f(x) = y} =
µA (x0). Now,

f→
(

µ
A

(1)
L

)
(y) =

f→
(

µ
A

(1)
L

)
(x0) if µA(x0) = 1

2

0 otherwise

=

µ
A

(1)
L

(x0) if µA(x0) = 1
2

0 otherwise

=
{

µA (x0) if µA(x0) = 1
2

0 otherwise
.

Again,

(f→(µA))(1)
L (y) =

{
f→(µA)(y) if f→(µA)(y) = 1

2
0 otherwise

=
{

µA (x0) if µA(x0) = 1
2

0 otherwise
.

∴ f→
(
µ

(1)
AL

)
(y) = (f→(µA))(1)

L (y) ∀ y ∈ Y , i.e., µ
A

(1)
L

is an invariant of homeomorphism.

Theorem 3.2.6. A
(1)
L ⊆ A

(3)
L .

Proof. Let x ∈ A
(1)
L . ∴ µA(x) = 1

2 =⇒ µA(x) = 1
2 = ε for some ε ≥ 0. Again, µAC (x) =

1−A(x) = 1
2 =⇒ µ

AC (x) = 1
2 +ε′ [∵ µA ≤ µA]. But then one of A and AC must be closed. Let

B ∈ {A, AC} is closed. Then B(x) = B(x) = 1
2 . Then

(
µA ∧ µ

AC

)
(x) = 1

2 =⇒ x ∈ A ∩ AC .

∴ A
(1)
L ⊆ A

(3)
L .
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3.3 Examples
1. Let us suppose A be a fuzzy set in X where

µA =


0 if |x| > 3,

ε if |x| = 3,

||x| − 3| if 2 < |x| < 3,

1 if |x| ≤ 2.

Then A is closed in R as it is upper semicontinuous from R to I. Then,

µA◦ =



0 if |x| > 3,

0 if |x| = 3,

||x| − 3| if 2 < |x| < 3,

1 − ε1 if |x| = 2,

1 if |x| < 2.

Here, L = {±2.5} and µ
A

(1)
L

=
{(

2.5, 1
2

)
,
(
−2.5, 1

2

)}
.

3.4 Results about Coast similar to Warren’s properties
It should be repeated again that our definition of the Coast is not intended to serve as a defi-
nition of boundary. On the very contrary, is it applicable only in those cases where we find it
difficult to deal with more formal definitions of fuzzy boundary but still would like our sets to
retain their innate sense of fuzziness. It is only in those cases that we would like a “line” between
a set and its complement, a line that marks the bounds of the set. It gives us a somewhat crisp
boundary in an otherwise fuzzy environment. But its application lies in an entirely different
environment than where fuzzy boundary is applied.

Richard Warren postulated some conditions a reasonably good definition for fuzzy boundary
(∂A) must satisfy [the definitions that satisfy a particular property are written in brackets]:

(W1) ∂A is closed. [(B1), (B2), (B3), (B4)]

(W2) The closure is the supremum of the interior and the boundary, i.e., A = A◦ ∨ ∂A. [(B1),
(B2), (B3), (B4)]

(W3) This fuzzy definition of boudary becomes the usual topological boundary when the sets
concerned are crisp. [(B1), (B2), (B3), (B4)]

(W4) The boundary operator is an equivalent way of defining a fuzzy topology. [(B1), (B2),
(B3), (B4)]

(W5) The boundary of a fuzzy set is identical to the boundary of the complement of the set.
[(B2), (B4)]

(W6) If a fuzzy set is closed (or open), then the interior of the boundary is empty. [(B3)]

(W7) If a fuzzy set is both open and closed, then the boundary is empty.

A Coast has nothing to do with these properties, and indeed, satisfying them is not a criteria.
We have in this section formulated some properties the coast satistfies. These properties are
comparabe with Warren’s properties and hence might give a clearer idea of the comparison and
contrast between fuzzy boundary and Coast.



28

(W1′) Unlike the conventional boundaries, Coast is not closed.

(W2′) A > A◦ ∨ A
(1)
L , A > A◦ ∨ A

(2)
L however it is not necessarily the supremum as stated in the

condition.

(W5′) holds for A
(1)
L and A

(3)
L but not necessarily for A

(2)
L .

(W6′) If the interior of the Coast in R2 is empty, then the Coast is a line or a set of scattered
points. Else, it is two-dimensional.

Proof.

(W2′) We know, A ⊃ A◦. Also µA(x) ≥ µA(x) =⇒ µA(x) ≥ 1
2 when µA(x) ≥ 1

2 . So,
A ⊃ A◦ ∪ A

(1)
L . The other part follows the same way.

(W5′) This holds since µA(x) = 1
2 =⇒ µAC (x) = 1

2 .
For A

(2)
L this is true only if µA(x) = µA(x), i.e., if A is closed.

For A
(3)
L , we can see that µA ∧ µ

AC = 1
2 ⇔ µ

(AC)C ∧ µ
AC = 1

2 . So the Coasts for A and
AC are same.

(W6′) It is easy to see that every two-dimensional area has a non-empty interior. So, if the
interior is empty, the Coast must be a line or a scattered set of points. Figures 8.4, 8.5
and 8.6 shows that the Coast can indeed be two-dimensional.

3.5 Coast forms a subset of the boundary
By outward monotonicity, we mean that whenever the central point of the region (with mem-
bership 1) is joined with a point on the boundary by a straight line, with distance from the
center the membership value monotonically decreases (or remains same). Thus the points with
membership 1

2 should lie together on each such line. Continuity over R2 implies that those
points shall form a connected set.

If the membership value is strictly decreasing on each outward line, then each line can have
at most 1 point with membership 1

2 . However, continuity implies that running from 1 to 0, the
line shall have memberships each value in between. So, AL is a one-dimensional loop. Thus,

Theorem 3.5.1. In a simple closed region with outwardly monotone and continuous member-
ship function, AL is a closed loop. If it is strictly decreasing outward then AL is a 1-dimensional
loop.
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Chapter 4

Use of Coast

4.1 As a ‘crisper’ subset of the boundary
Broadly, any point between absolute membership 1 and 0 is a boundary point for a fuzzy set.
However, a more precise categorization of boundary is necessary. For image enhancement we
sometimes need a clearer view of the set and its exterior, and Coast solves this purpose to some
extent.

Result 4.1.1. 0 ≤ µ∂A ≤ 1
2 for any fuzzy set A.

The membership of a point in the boundary is at most half. The more we go both ways to the
interior or exterior of the set, membership in the boundary decreases. The definition of Coast
has been conceived such that it considers as boundary, in a very crisp way, only those points
which have the maximum possible membership in other definitions of boundary, making A

(3)
L a

proper subset of our usual definition of ∂A and other AL’s alternatives in appropriate situations.

This gives a thinner boundary, demarcating the set and its exterior more prominently.

Example. Where the exact shoreline varies due to daily high and low tides and lunar cycles,
the Coast can be used to draw a precise outline map. We can paint the interior as inland and
the exterior blue for the sea. For a gross idea or for a political map this will be more suited.

The sand beach is usually the boundary between land and water and being a part of each
during each time of the day. Now, if A denotes underwater place, µA(x) = 0 implies the place
x is inland. Similarly, µA(x) = 1 for the sea.

One likely option is to mark the exact water-lines during the high-tides and low-tides ev-
eryday over a lunar cycle and take their average mid-point on map to mark the place with
membership mA as 1

2 . But this approach has its problems that (i) the slope of the land is not
reflected in the map; (ii) land undulations or nature of rocks and soils can affect tide water
level, and hence these marked points may not exactly reflect ‘the state of being halfway inland’.

As a better alternative, we can set µA(x) = 1
2 is the point x remains dry for exactly 12

hours a day in all, or on an average 1
2 of the lunar cycle. For political or jurisdictory maps

(which indeed is needed very much in river-delta areas, where calculation of the areas of islands
is necessary to estimate the amount of land under each police station and fix patrolling duties)
or for drawing one-pixel wide coastal line in maps, these points with µA as 1

2 can be used. Then
we consider the border as AL.
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Figure 4.1: Sankarpur Mohana, West Bengal from Google Earth. Here Google Earth uses some
technique to make one coast line out of several time series images.

An example is given from NASA Worldview where they use coastal linings. The off-white
area by the coast is the fuzzy sandbeach in Fig 8.2 while the black demarcation line is drawn
through that in Fig 8.3.

Figure 4.2: Western part of Bhagirathi-Hoogly delta
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Figure 4.3: Western part of Bhagirathi-Hoogly delta, coast outlined

4.2 Calculation of Coast in the above-posed situation

We take 2n number of aerial photographs of the beach in question within the same frame over
a lunar cycle, captured at regular time intervals. Superimposing the images, we get 2n water-
lines stretched almost all across the beach width. We mark black the strip between the n and
(n + 1)th lines as the Coast. Of course, this is not exactly the Coast as defined, but the best
possible approximation from our pictorial data. No better conclusion from the given assumed
data is possible. Each point within this strip remains underwater in exactly half of the pictures.

As n increases, we get a finer strip that approaches the exact fuzzy line
{

x | µA(x) = 1
2

}
as

n → ∞. It might be noted as well, that a fuzzy line may or may not be a line. If the slope at
one point is 0 and its membership is 1

2 , then the fuzzy line is two-dimensional there. Figures
8.4, 8.5 and 8.6 show such a case where the whole strip BC has µA

1
2 .

Figure 4.4: The whole strip BC has µA = 1
2 : when the water level is above BC



32

Figure 4.5: The whole strip BC has µA = 1
2 : when the water level is at BC

Figure 4.6: The whole strip BC has µA = 1
2 : when the water level is below BC

Also, Theorem 3.5.1 might or might not be applicable. The slope at some point might be
infinity, and hence the graph discontinuous. Take for example rocky cliff sea-shores which nat-
urally give us Coasts predefined.

4.3 An example

The data used has been taken from https://earthobservatory.nasa.gov/images/145237/
mapping-the-land-between-the-tides. A 3D Landsat model of Roebuck coast of Australia
is shown below, each photograph of time 3 hours apart in a 24-hour cycle.

https://earthobservatory.nasa.gov/images/145237/mapping-the-land-between-the-tides
https://earthobservatory.nasa.gov/images/145237/mapping-the-land-between-the-tides
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Superimposed, the images give a Coast somewhere through the middle of the beach.

Figure 4.7: Coast given by superimposing 8 frames a day

Below, the Coast given by roughly the 29th, 30th, 87th and 88th frames is shown, from a
116-frame data of the same shore over a diurnal tide cycle.

Figure 4.8: Coast given by superimposing 116 frames a day
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Chapter 5

Conclusions

From the use of related concepts in [19, Example 2.2] and [14] we have essentially formulated
here 3 definitions for the coast of a fuzzy set. There might be situations in which each shall
prove useful; broadly speaking, the coast consists of those points in the boundary whose mem-
bership either in the set or its closure or in the boundary is 1

2 . We have further shown how
these three coastlines interact among themselves, as well as with the standard definitions of
fuzzy boundary. Examples have been illustrated to show some situations in which dealing with
the coast is more appropriate than the fuzzy boundary. Demarcation between land and water
for judicial maps on a concrete basis is feasible with this idea. Similar procedures might be
followed for other geographical characteristics like forest cover (trees and clearing) or soil types.

It might be worth further study how the various boundaries interact with the Coast, and
what benefits one might derive in other problems by adopting the Coast as demarcation between
complementary sets. Further techniques may be employed in cases where the coast in a map
is two-dimensional, i.e., has a non-empty interior. It might need to be further reduced to a
one-dimensional subset for the sake of border clarity.
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