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1. Prove that
√

5 is an irrational number.

Soln. Suppose, on the contrary, that
√

5 is a rational number, and can be written as
√

5 =
𝑝
𝑞

such that 𝑝, 𝑞 ∈

ℤ; gcd (𝑝, 𝑞) = 1. Then 𝑝 = 𝑞
√

5, i.e.,
𝑝2 = 5𝑞2. (1)

Right-hand side is divisible by 5, so 5 divides 𝑝2, i.e., 5 divides 𝑝. Hence, 25 divides 𝑝2, the left-hand
side of (1). So 25 must divide 5𝑞2 ⇒ 5 divides 𝑞2, which means 5 divides 𝑞. Then gcd (𝑝, 𝑞) ≥ 5, a
contradiction.
So our initial assumption was wrong and

√

5 cannot be expressed as a rational number.

2. Prove that ℕ is not bounded above.

Soln. Suppose there exists 𝑥 ∈ ℝ such that 𝑥 > 𝑛 ∀ 𝑛 ∈ ℕ, i.e., 𝑥 is an upper bound of ℕ. By Least Upper
Bound Property, there exists some 𝑀 ∈ ℝ such that 𝑀 = supℕ. Then,

𝑛 ≤ 𝑀 ∀ 𝑛 ∈ ℕ
⇒ 𝑛 − 1 ≤ 𝑀 − 1 ∀ 𝑛 ∈ ℕ
⇒ (𝑛 + 1) − 1 ≤ 𝑀 − 1 ∀ 𝑛 ∈ ℕ (recall Peano’s axioms)
⇒ 𝑛 ≤ 𝑀 − 1 ∀ 𝑛 ∈ ℕ.

Therefore𝑀−1 is also an upper bound ofℕ but𝑀 is supposed to be the least upper bound, a contradiction.

3. Let 𝐴 ⊆ ℝ be bounded. Prove that sup(−𝐴) = − inf 𝐴 and inf(−𝐴) = − sup𝐴.

Soln. The point of this exercise is for you to understand why it is not required to include the existence of infimum
in the axiom of completeness.
I shall show you how − sup(−𝐴) = inf 𝐴. 𝐴 is bounded, which means that there exists 𝑥 ∈ ℝ ∋ 𝑥 ≤
𝑎 ⇒ −𝑥 ≥ −𝑎 ⇒ 𝑥 is an upper bound for −𝐴 = {−𝑎 | 𝑎 ∈ 𝐴}. Here, 𝑥 has been an arbitrary lower bound
for 𝐴. By the axiom of completeness as we know it, ∃ 𝑦 ∈ ℝ ∋ 𝑦 = sup(−𝐴), i.e., −𝑎 ≤ 𝑦 ≤ −𝑥 ∀ 𝑎 ∈
𝐴 ⇒ 𝑥 ≤ −𝑦 ≤ 𝑎. Here, −𝑦 is an lower bound for 𝐴, and for any arbitrary 𝑥 ≤ 𝑎, greater than 𝑥, i.e., the
greater lower bound or infimum of 𝐴. Therefore, − sup(−𝐴) = inf 𝐴.
You should be able to show the other part by replacing 𝐴 by −𝐴.

4. Find the superma and infima of the following sets:

(a)
{

𝑥 ∈ ℝ | 3𝑥2 + 8𝑥 − 3 < 0
}

.
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Soln. 3𝑥2+8𝑥−3 < 0 ⇒ 3𝑥2+9𝑥−𝑥−3 < 0 ⇒ (3𝑥−1)(𝑥+3) < 0. Either 3𝑥−1 > 0, 𝑥+3 < 0 ⇒ 𝑥 > 1
3 , 𝑥 < 3

which is not possible together, or 3𝑥 − 1 < 0, 𝑥 + 3 > 0 ⇒ 𝑥 < 1
3 , 𝑥 > −3. So 𝑥 ∈

(

−3, 13
)

. Thus,

sup 𝑥 = 1
3 , inf 𝑥 = −3.

(b)
{1
𝑛
+ 1

𝑚
|

|

|

|

𝑛, 𝑚 ∈ ℕ
}

.

Soln. Check with 𝑛 = 1, 𝑚 ∈ ℕ: 1
1
+ 1

1
= 2, 1

1
+ 1

2
= 11

2
, 1
1
+ 1

3
= 11

3
... (decreasing)

Check with 𝑛 = 2, 𝑚 ∈ ℕ: 1
2
+ 1

1
= 11

2
, 1
2
+ 1

2
= 1, 1

2
+ 1

3
= 5

6
... (decreasing)

and so on.
You can see that the supremum has been attained at 𝑛 = 1, 𝑚 = 1. But what about the infimum? Take
any positive real number < 1, say 𝜀. By Archimedean property, we can find 𝑛 ∈ ℕ such that 𝑛 > 2

𝜀
∈ ℝ

and take 𝑚 = 𝑛. We see that 1
𝑛
+ 1

𝑚
< 𝜀

2
+ 𝜀

2
= 𝜀. So there exist natural numbers 𝑛, 𝑚 for which 1

𝑛
+ 1

𝑚
is less than any arbitrary positive real number, but is never negative. What is the infimum of positive real
numbers?

(c)
{

𝑛 ∈ ℕ
|

|

|

|

𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

}

.

Soln.

cos 2.1𝜋
3

= 2 cos2 𝜋
3
− 1 = 2.1

4
− 1 = −1

2
,

cos 2.2𝜋
3

= 2 cos2 2𝜋
3

− 1 = 2.1
4
− 1 = −1

2
,

cos 2.3𝜋
3

= cos (2𝜋) = cos 0 = 1,

cos 2.4𝜋
3

= cos
(

2𝜋 + 2.1𝜋
3

)

etc.

Since cos 2𝑛𝜋
3

is a negative constant, the infimum and supremum of
{

𝑛 ∈ ℕ
|

|

|

|

𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

}

are at-

tained respectively at the supremum and infimum of
{

𝑛 ∈ ℕ
|

|

|

|

𝑛 − 1
𝑛 + 1

}

.

For 𝑛 = 1, 𝑛 − 1
𝑛 + 1

= 0.

For 𝑛 = 2, 𝑛 − 1
𝑛 + 1

= 1
3

.

For 𝑛 = 3, 𝑛 − 1
𝑛 + 1

= 2
4

For 𝑛 = 4, 𝑛 − 1
𝑛 + 1

= 3
5

For 𝑛 = 5, 𝑛 − 1
𝑛 + 1

= 4
6

For 𝑛 = 6, 𝑛 − 1
𝑛 + 1

= 5
7

etc.

Correspondingly,

for 𝑛 = 1, 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

= 0.
(

−1
2

)

= 0;

for 𝑛 = 2, 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

= 1
3

(

−1
2

)

− = −1
6

;
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for 𝑛 = 3, 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

= 2
4
.1 = 1

2
;

for 𝑛 = 4, 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

= 3
5

(

−1
2

)

= − 3
10

;

for 𝑛 = 5, 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

= 4
6

(

−1
2

)

= −1
3

;

for 𝑛 = 6, 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

= 5
7
.1 = 5

7
etc.

[I am using the terminology of sequences here. Strictly speaking, this example can be studied without
knowing about sequences; yet since you have studies about sequences in class, it won’t harm to use one
or two words that ease the arguments considerably.]

Let 𝑎𝑛 = 𝑛 − 1
𝑛 + 1

cos 2𝑛𝜋
3

. Then absolute values of the entries in each of the 3 sequences
{

𝑎3𝑘
}

𝑘∈ℕ,
{

𝑎3𝑘+1
}

𝑘∈ℕ and
{

𝑎3𝑘+2
}

𝑘∈ℕ increase with increasing 𝑘. This leaves us with 𝑎2 = −1
6

as the least value in
a discrete setting, giving the infimum. All these 𝑎𝑛’s are less than 1. Consider the subsequence

{

𝑎3𝑘+2
}

𝑘∈ℕ
that you can actually see to tend to 1 as 𝑘 → ∞. So, we can be sure that 1 is the supremum.

(d)
{

𝑛 ∈ ℕ
|

|

|

|

|

(𝑛 + 1)2

2𝑛

}

.

Soln. Let 𝑎𝑛 =
(𝑛 + 1)2

2𝑛
. Then

𝑎𝑛
𝑎𝑛+1

=
2
(

𝑛2 + 2𝑛 + 1
)

𝑛2 + 4𝑛 + 4
=

2
(

𝑛2 + 4𝑛 + 4
)

𝑛2 + 4𝑛 + 4
−

2 (2𝑛 + 3)
𝑛2 + 4𝑛 + 4

= 2− 4𝑛 + 6
𝑛2 + 4𝑛 + 4

>

1. So we have 𝑎𝑛+1 < 𝑎𝑛 for all 𝑛 ≥ 3. 𝑎1 = 2, 𝑎2 = 9
4
, 𝑎3 = 2, 𝑎4 = 25

16
etc. The highest is attained at

𝑛 = 2. The infimum is 0 since 2𝑛 values increase with a much higher rate with increasing 𝑛, than (𝑛 + 1)2.
We have seen that 𝑎𝑛+1 <

2
3
𝑎𝑛, so for any given 𝜀 > 0 we can find 𝑛 ∈ ℕ such that 𝑎𝑛 < 𝜀.

5. Prove that [0, 1] is uncountable.

Soln. Consider numbers written like this 0.𝑥1𝑥2𝑥3… where the entries after the decimal point are either 0 or 1.
It is clear that their collection is a proper subset of [0, 1]. Check out Rudin’s book, Theorem 2.14 (I have
explained this in class), which shows that the collection of such numbers is uncountable. [0, 1], being a
superset, is certainly so.

6. Find the sets of all interior points for the following sets: ℚ, (0, 2].

Soln. For ℚ, Let’s say 𝑞 ∈ ℚ. Consider any 𝜀 > 0 and the open interval (𝑞 − 𝜀, 𝑞 + 𝜀). Since irrational numbers are
dense in ℝ, there exists some 𝑟 ∉ ℚ such that 𝑞 − 𝜀 < 𝑟 < 𝑞, i.e., 𝑟 ∈ (𝑞 − 𝜀, 𝑞 + 𝜀). So 𝑞 has no interior
point.

For (0, 2], If 2 ≠ 𝑥 ∈ (0, 2], then there exists some 𝜀𝑥 > 0 such that
(

𝑥 − 𝜀𝑥, 𝑥 + 𝜀𝑥
)

⊂ (0, 2]. So, (0, 2) is the
interior.

7. Let 𝑆 be a non-empty bounded set. Consider the set 𝑇 = {|𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝑆}. Prove that 𝑇 is bounded
above. Find the supremum of 𝑇 .

Soln. 𝑆 is a bounded set. So there exists 𝑀 ∈ ℝ≥0 such that for any 𝑥 ∈ 𝑆, |𝑥| < 𝑀 . By triangle inequality,
|𝑥 − 𝑦| ≤ |𝑥| + |𝑦| < 2𝑀 . So, 𝑇 is bounded.
sup 𝑇 = | sup𝑆 − inf 𝑆|.
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