Solutions to Problem Set-1

Anamitro Biswas Email: anamitroappu@gmail.com/anamitrob@iitbhilai.ac.in

- 1. Prove that $\sqrt{5}$ is an irrational number.
- Soln. Suppose, on the contrary, that $\sqrt{5}$ is a rational number, and can be written as $\sqrt{5} = \frac{p}{q}$ such that $p, q \in$

Z; gcd
$$(p,q) = 1$$
. Then $p = q\sqrt{5}$, i.e.,
 $p^2 = 5q^2$. (1)

Right-hand side is divisible by 5, so 5 divides p^2 , i.e., 5 divides p. Hence, 25 divides p^2 , the left-hand side of (1). So 25 must divide $5q^2 \Rightarrow 5$ divides q^2 , which means 5 divides q. Then gcd $(p,q) \ge 5$, a contradiction.

So our initial assumption was wrong and $\sqrt{5}$ cannot be expressed as a rational number.

- 2. Prove that \mathbb{N} is not bounded above.
- Soln. Suppose there exists $x \in \mathbb{R}$ such that $x > n \forall n \in \mathbb{N}$, i.e., x is an upper bound of N. By Least Upper Bound Property, there exists some $M \in \mathbb{R}$ such that $M = \sup \mathbb{N}$. Then,

$$n \le M \ \forall \ n \in \mathbb{N}$$

$$\Rightarrow \ n-1 \le M-1 \ \forall \ n \in \mathbb{N}$$

$$\Rightarrow \ (n+1)-1 \le M-1 \ \forall \ n \in \mathbb{N} \text{ (recall Peano's axioms)}$$

$$\Rightarrow \ n \le M-1 \ \forall \ n \in \mathbb{N}.$$

Therefore M-1 is also an upper bound of \mathbb{N} but M is supposed to be the least upper bound, a contradiction.

- 3. Let $A \subseteq \mathbb{R}$ be bounded. Prove that $\sup(-A) = -\inf A$ and $\inf(-A) = -\sup A$.
- *Soln.* The point of this exercise is for you to understand why it is not required to include the existence of infimum in the axiom of completeness.

I shall show you how $-\sup(-A) = \inf A$. *A* is bounded, which means that there exists $x \in \mathbb{R} \ni x \leq a \Rightarrow -x \geq -a \Rightarrow x$ is an upper bound for $-A = \{-a \mid a \in A\}$. Here, *x* has been an arbitrary lower bound for *A*. By the axiom of completeness as we know it, $\exists y \in \mathbb{R} \ni y = \sup(-A)$, i.e., $-a \leq y \leq -x \forall a \in A \Rightarrow x \leq -y \leq a$. Here, -y is an lower bound for *A*, and for any arbitrary $x \leq a$, greater than *x*, i.e., the greater lower bound or infimum of *A*. Therefore, $-\sup(-A) = \inf A$.

You should be able to show the other part by replacing A by -A.

- 4. Find the superma and infima of the following sets:
- (a) $\{x \in \mathbb{R} \mid 3x^2 + 8x 3 < 0\}$.

Soln. $3x^2 + 8x - 3 < 0 \Rightarrow 3x^2 + 9x - x - 3 < 0 \Rightarrow (3x - 1)(x + 3) < 0$. Either $3x - 1 > 0, x + 3 < 0 \Rightarrow x > \frac{1}{3}, x < 3$ which is not possible together, or $3x - 1 < 0, x + 3 > 0 \Rightarrow x < \frac{1}{3}, x > -3$. So $x \in (-3, \frac{1}{3})$. Thus, $\sup x = \frac{1}{3}, \inf x = -3$.

(b)
$$\left\{ \frac{1}{n} + \frac{1}{m} \mid n, m \in \mathbb{N} \right\}.$$

Soln. Check with $n = 1, m \in \mathbb{N}$: $\frac{1}{1} + \frac{1}{1} = 2, \frac{1}{1} + \frac{1}{2} = 1\frac{1}{2}, \frac{1}{1} + \frac{1}{3} = 1\frac{1}{3}$... (decreasing) Check with $n = 2, m \in \mathbb{N}$: $\frac{1}{2} + \frac{1}{1} = 1\frac{1}{2}, \frac{1}{2} + \frac{1}{2} = 1, \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$... (decreasing) and so on.

You can see that the supremum has been attained at n = 1, m = 1. But what about the infimum? Take any positive real number < 1, say ε . By Archimedean property, we can find $n \in \mathbb{N}$ such that $n > \frac{2}{\varepsilon} \in \mathbb{R}$ and take m = n. We see that $\frac{1}{n} + \frac{1}{m} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. So there exist natural numbers n, m for which $\frac{1}{n} + \frac{1}{m}$ is less than any arbitrary positive real number, but is never negative. What is the infimum of positive real numbers?

(c)
$$\left\{ n \in \mathbb{N} \mid \frac{n-1}{n+1} \cos \frac{2n\pi}{3} \right\}.$$

Soln.

$$\cos \frac{2.1\pi}{3} = 2\cos^2 \frac{\pi}{3} - 1 = 2 \cdot \frac{1}{4} - 1 = -\frac{1}{2},$$

$$\cos \frac{2.2\pi}{3} = 2\cos^2 \frac{2\pi}{3} - 1 = 2 \cdot \frac{1}{4} - 1 = -\frac{1}{2},$$

$$\cos \frac{2.3\pi}{3} = \cos(2\pi) = \cos 0 = 1,$$

$$\cos \frac{2.4\pi}{3} = \cos\left(2\pi + \frac{2.1\pi}{3}\right) \text{ etc.}$$

Since $\cos \frac{2n\pi}{3}$ is a negative constant, the infimum and supremum of $\left\{n \in \mathbb{N} \mid \frac{n-1}{n+1} \cos \frac{2n\pi}{3}\right\}$ are attained respectively at the supremum and infimum of $\left\{n \in \mathbb{N} \mid \frac{n-1}{n+1}\right\}$.

For n = 1, $\frac{n-1}{n+1} = 0$. For n = 2, $\frac{n-1}{n+1} = \frac{1}{3}$. For n = 3, $\frac{n-1}{n+1} = \frac{2}{4}$ For n = 4, $\frac{n-1}{n+1} = \frac{3}{5}$ For n = 5, $\frac{n-1}{n+1} = \frac{4}{6}$ For n = 6, $\frac{n-1}{n+1} = \frac{5}{7}$ etc. Correspondingly, for n = 1, $\frac{n-1}{n+1} \cos \frac{2n\pi}{3} = 0$. $\left(-\frac{1}{2}\right) = 0$; for n = 2, $\frac{n-1}{n+1} \cos \frac{2n\pi}{3} = \frac{1}{3} \left(-\frac{1}{2}\right) - = -\frac{1}{6}$;

for
$$n = 3$$
, $\frac{n-1}{n+1} \cos \frac{2n\pi}{3} = \frac{2}{4} \cdot 1 = \frac{1}{2}$;
for $n = 4$, $\frac{n-1}{n+1} \cos \frac{2n\pi}{3} = \frac{3}{5} \left(-\frac{1}{2}\right) = -\frac{3}{10}$;
for $n = 5$, $\frac{n-1}{n+1} \cos \frac{2n\pi}{3} = \frac{4}{6} \left(-\frac{1}{2}\right) = -\frac{1}{3}$;
for $n = 6$, $\frac{n-1}{n+1} \cos \frac{2n\pi}{3} = \frac{5}{7} \cdot 1 = \frac{5}{7}$ etc.

[I am using the terminology of sequences here. Strictly speaking, this example can be studied without knowing about sequences; yet since you have studies about sequences in class, it won't harm to use one or two words that ease the arguments considerably.]

Let $a_n = \frac{n-1}{n+1} \cos \frac{2n\pi}{3}$. Then absolute values of the entries in each of the 3 sequences $\{a_{3k}\}_{k \in \mathbb{N}}$, $\{a_{3k+1}\}_{k \in \mathbb{N}}$ and $\{a_{3k+2}\}_{k \in \mathbb{N}}$ increase with increasing k. This leaves us with $a_2 = -\frac{1}{6}$ as the least value in a discrete setting, giving the infimum. All these a_n 's are less than 1. Consider the subsequence $\{a_{3k+2}\}_{k \in \mathbb{N}}$ that you can actually see to tend to 1 as $k \to \infty$. So, we can be sure that 1 is the supremum.

(d) $\left\{ n \in \mathbb{N} \mid \frac{(n+1)^2}{2^n} \right\}.$

Soln. Let $a_n = \frac{(n+1)^2}{2^n}$. Then $\frac{a_n}{a_{n+1}} = \frac{2(n^2+2n+1)}{n^2+4n+4} = \frac{2(n^2+4n+4)}{n^2+4n+4} - \frac{2(2n+3)}{n^2+4n+4} = 2 - \frac{4n+6}{n^2+4n+4} > 1$. So we have $a_{n+1} < a_n$ for all $n \ge 3$. $a_1 = 2$, $a_2 = \frac{9}{4}$, $a_3 = 2$, $a_4 = \frac{25}{16}$ etc. The highest is attained at n = 2. The infimum is 0 since 2^n values increase with a much higher rate with increasing *n*, than $(n+1)^2$. We have seen that $a_{n+1} < \frac{2}{3}a_n$, so for any given $\varepsilon > 0$ we can find $n \in \mathbb{N}$ such that $a_n < \varepsilon$.

- 5. Prove that [0, 1] is uncountable.
- Soln. Consider numbers written like this $0.x_1x_2x_3...$ where the entries after the decimal point are either 0 or 1. It is clear that their collection is a proper subset of [0, 1]. Check out Rudin's book, Theorem 2.14 (I have explained this in class), which shows that the collection of such numbers is uncountable. [0, 1], being a superset, is certainly so.
 - 6. Find the sets of all interior points for the following sets: \mathbb{Q} , (0, 2].
- Soln. For \mathbb{Q} , Let's say $q \in \mathbb{Q}$. Consider any $\varepsilon > 0$ and the open interval $(q \varepsilon, q + \varepsilon)$. Since irrational numbers are dense in \mathbb{R} , there exists some $r \notin \mathbb{Q}$ such that $q \varepsilon < r < q$, i.e., $r \in (q \varepsilon, q + \varepsilon)$. So q has no interior point.

For (0,2], If $2 \neq x \in (0,2]$, then there exists some $\epsilon_x > 0$ such that $(x - \epsilon_x, x + \epsilon_x) \subset (0,2]$. So, (0,2) is the interior.

- 7. Let S be a non-empty bounded set. Consider the set $T = \{|x y| : x, y \in S\}$. Prove that T is bounded above. Find the supremum of T.
- Soln. S is a bounded set. So there exists $M \in \mathbb{R}_{\geq 0}$ such that for any $x \in S$, |x| < M. By triangle inequality, $|x - y| \leq |x| + |y| < 2M$. So, T is bounded. $\sup T = |\sup S - \inf S|$.