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The Classical Davenport Constant

Like many intriguing problems in combinatorial number theory, it all sort
of began with a simple result published by Paul Erdős, Adam Ginzburg and
A. Ziv. It says that each set of 2n − 1 integers contains some subset of n
elements the sum of which is a multiple of n

, which is equivalently said as:
(G, +, 0) finite abelian group.
G-sequence of length k: S = (x1, . . . , xk) with xi ∈ G for each i.
zero-sum G-sequence: S = (x1, . . . , xk) ∋

∑
i xi = 0.

Theorem (Erdős, Ginzburg and Ziv, 1961)

Every (2n − 1)-length sequence from Cn shall have a zero-sum
subsequence of length n.
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The Classical Davenport Constant

Problems

This started the study of zero-sum problems in Additive group theory.

1 conditions which ensure that given sequences have non-empty
zero-sum subsequences with prescribed properties.

2 structure of extremal sequences which have no zero-sum
subsequences.
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The Classical Davenport Constant

Davenport constant

Baayen, Erdős and Davenport posed the problem to
determine

D(G) = min {|S| : S ∈ F(G) has a non-trivial zero subsum}

called the Davenport constant for group G.
Variations of the problem find it convenient to deal
with multiplicative notation, a sequence being a
member of the free abelian group F(G) generated
by G. However, we shall not be needing such
complicated notations: we shall denote by

juxtaposition when elements form a sequence,
and by
addition the group operation that gives
another element of the group.
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The Classical Davenport Constant

An Upper Bound

Theorem
D(G) ≤ |G|

Proof. Let S = (x1, x2, . . . , xn) ∈ F(G) where |G| = n. Consider

s1 = x1

s2 = x1 + x2
...

sn = x1 + x2 + · · · + xn

All si’s are distinct, so 0 ∈ {s1, . . . , sn}.
By Pigeon-Hole Principle, ∃ i ̸= j ∋ si = sj. Then, (xi+1, . . . , xj) is a
zero-sum subsequence.

So, D(G) ≤ |G|.
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The Classical Davenport Constant

Breaking Up Into Cyclic Groups

Particularly for G = Cn = ⟨1⟩ (the cyclic group of order n) we can
construct the sequence S = 11 . . . 1︸ ︷︷ ︸

n−1
such that 0 ̸∈ [S]. Thus

D(Cn) ≥ n ⇒ D(Cn) = n.
We denote by [S] the set of subsums of sequence S including σ(S).

[Olson, 1969]
If G ∼= Cn1 × Cn2 , then D(G) = n1 + n2 − 1.

To prove this, Olson used a tool that’d become
extremely useful in future.

Theorem
Let G ∼= H × K; |H| = h, |K| = k and h|k. If S is a
sequence over G ∋ |S| ≥ h + k − 1, then 0 ∈ [S].

Anamitro Biswas (TRIM, IAI, TCG-CREST) (r-wise) Davenport constant Students’ talk (Jan 18th 2024) 7 / 31



The Classical Davenport Constant

Breaking Up Into Cyclic Groups

Particularly for G = Cn = ⟨1⟩ (the cyclic group of order n) we can
construct the sequence S = 11 . . . 1︸ ︷︷ ︸

n−1
such that 0 ̸∈ [S]. Thus

D(Cn) ≥ n ⇒ D(Cn) = n.
We denote by [S] the set of subsums of sequence S including σ(S).

[Olson, 1969]
If G ∼= Cn1 × Cn2 , then D(G) = n1 + n2 − 1.

To prove this, Olson used a tool that’d become
extremely useful in future.

Theorem
Let G ∼= H × K; |H| = h, |K| = k and h|k. If S is a
sequence over G ∋ |S| ≥ h + k − 1, then 0 ∈ [S].

Anamitro Biswas (TRIM, IAI, TCG-CREST) (r-wise) Davenport constant Students’ talk (Jan 18th 2024) 7 / 31



The Classical Davenport Constant

Breaking Up Into Cyclic Groups

Particularly for G = Cn = ⟨1⟩ (the cyclic group of order n) we can
construct the sequence S = 11 . . . 1︸ ︷︷ ︸

n−1
such that 0 ̸∈ [S]. Thus

D(Cn) ≥ n ⇒ D(Cn) = n.
We denote by [S] the set of subsums of sequence S including σ(S).

[Olson, 1969]
If G ∼= Cn1 × Cn2 , then D(G) = n1 + n2 − 1.

To prove this, Olson used a tool that’d become
extremely useful in future.

Theorem
Let G ∼= H × K; |H| = h, |K| = k and h|k. If S is a
sequence over G ∋ |S| ≥ h + k − 1, then 0 ∈ [S].

Anamitro Biswas (TRIM, IAI, TCG-CREST) (r-wise) Davenport constant Students’ talk (Jan 18th 2024) 7 / 31



The Classical Davenport Constant

Generalization of EGZ theorem

Let G be a finite abelian group
and S be a sequence over G
∋ |S| = h + |G| − 1 where h | order(G).
Then ∃ S1|S ∋

1 |S1| = h;
2 0 ∈ [S]

Embed G in the direct product
Ch × G. Let 1h be a generator of
Ch. Consider the sequence

(1h, S) =
∏
g∈S

(1h, g)

Applying Theorem [?], we get
0 ∈ (1h, S). But since
order (1h) = h, that zero-sum
subsequence must be of length h.
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The Classical Davenport Constant

p-Groups

(Olson, 1968) For a p-group G ∼= Cpe1 × Cpe2 × · · · × Cped

D(G) = 1 +
d∑

i=1
(pei − 1) .

Conjecture (Olson)
For any G ∼= Cn1 × Cn2 × · · · × Cnd ∋ ni|ni+1,

D(G) = 1 +
d∑

i=1
(ni − 1) = D∗(G).

Is this conjecture true?
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The Classical Davenport Constant

Actually, it isn’t.

This conjecture is false in general. For infinitely many
groups of rank 4 this conjecture does not hold.

Geroldinger and Schneider, 1992
For odd m, n ∋ 3 ≤ m|n,

D
(
Cm ⊕ C2

n ⊕ C2n
)

> D∗
(
Cm ⊕ C2

n ⊕ C2n
)

Yet it remains to be seen
1 for which groups Olson’s conjecture holds
2 whether true for all groups of rank 3.
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The Classical Davenport Constant

Groups Of RanK 3

1. Bhowmik and Schlage-Puchta
D (C3 ⊕ C3 ⊕ C3d) = D∗ (C3 ⊕ C3 ⊕ C3d) ∀ d ∈ N.

Conjecture

Fixed 5 ≤ p ∈ P, G ∼= C3
p ⊕ C2.

S = (x1, y1) . . . (x4p−2, y4p−2) ∈ F(G) ∋

y1 = · · · = yr = 1
yr+1 = · · · = y4p−2 = 0

for even r ∈ [2p + 2, 4p − 6]. Then 0 ∈ [S].

2. Sheikh, 2017
D (Cp ⊕ Cp ⊕ C2p) = D∗ (Cp ⊕ Cp ⊕ C2p) ∀ p ∈ P for which the
Conjecture holds.
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The Classical Davenport Constant

The conjecture is yet unproved, neither has any counterexample been
found.

In fact, relying a little bit on the computer, Sheikh confirmed

3. Sheikh, 2017
D (C5 ⊕ C5 ⊕ C10) = D∗ (C5 ⊕ C5 ⊕ C10 = 18.

But the computer is as hopeless with further mathematics as ChatGPT is
with poetry. So, it gets us only that far with exact values.

4. Sheikh, 2017
D (C5 ⊕ C5 ⊕ C5d) = D∗ (C5 ⊕ C5 ⊕ C5d + 4 ∀ d ∈ N .

5. Delorme et al.
If p ∈ P, 2 ≤ n ∈ N & gcd (m, pn) = 1, then
D (Cp × Cp × Cpnm = D∗ (Cp × Cp × Cpnm) .

Summer 2022, we were looking at further generalizations of this.
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The Classical Davenport Constant

Conjecture 2

Fix p, q (p ̸= q), p ∈ P; define G := Cd
p × Cq.

Let m = p(q + 2) − 2.
Let S = (x1, y1) . . . (xm, ym) ∈ F

(
Cd

p × Cq
)
.

Suppose

y∑t
i=1 ri+1 = · · · = y∑t+1

i=1 ri
= t + 1 (t ∈ [0, q − 1])

where r =
q−1∑
i=1

ri. If

1 r ∈ [pq + 1, p(q + 2) − 2] and

2

q−1∑
i=1

iri ≡ 0 (mod q),

then 0 ∈ [S].
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The Classical Davenport Constant

Theorem (Ours)

Let p be a prime such that Conjecture 2 holds. Then, for group
G = Cd

p × Cq,
D(G) = D∗(G).

It’s currently submitted and under review.
(Bhowmik and Schlage-Puchta, 2007) For G ∼= C3 × C3 × C3d, d ∈ N,
D(G) = D∗(G). So Conjecture 2 is true for p = 3 at least.
One can observe that Conjecture 3 is much stronger than Conjecture
2, because

Dr
(
Cd

p
)

= (r + d − 1)p − (d − 1)

=⇒ D
(
Cd−1

p × Cpr
)

= (r + d − 1)p − (d − 1).
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The r-wise Davenport Constant
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The r-wise Davenport Constant

Defining An Interesting Generalization

There can be a number of possible ways to generalize the idea of
Davenport constant which just requires one sequence that adds to zero.

Definition (Girard and Schmid, 2019)
For r ∈ N,
Dr(G) = min {k ∈ N | ∀ S ∈ F(G) ∋ |S| ≥ k,

S has r disjoint zero-sum subsequences.}

Dr(G) ≤ Dr+1(G).
Dr(G) = D(G) for r = 1.

Looking back at the past, we shall present the results that were discovered
for Dr almost in the same order as with D.
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The r-wise Davenport Constant

Girard and Schmid, 2019
If n, r ∈ N,

Dr(Cn)

= rn.

Maximal r-wise zero-sum free sequence:
(1, 0, . . . , 0)n(0, 1, 0, . . . , 0)n . . . (0, . . . , 0, 1, 0n(0, . . . , 0, 1)n−1

Let G ∼= Cm × Cn where m|n. Then,

Dr(G) = rn + m − 1.

What about higher ranks.
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The r-wise Davenport Constant

for p-groups

Let p be an odd prime and G ∼= Cpe1 × Cpe2 × · · · × Cped ∋ ei ≤ ei+1.
Maximal lower bound:
(1, 0, . . . , 0︸ ︷︷ ︸

d

)rped −1(0, 1, . . . , 0)ped−1 −1 . . . (0, 0, . . . , 0, 1)pe1 −1.

∴ Dr (G) ≥ rped +
d−1∑
i=1

pei − k + 1.

Theorem (Target to prove)

If ped ≥ 1 +
d−1∑
i=1

(pei − 1),

then

Dr(G) = rped +
d−1∑
i=1

pei − k + 1.
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)rped −1(0, 1, . . . , 0)ped−1 −1 . . . (0, 0, . . . , 0, 1)pe1 −1.

∴ Dr (G) ≥ rped +
d−1∑
i=1

pei − k + 1.

Theorem (Target to prove)

If ped ≥ 1 +
d−1∑
i=1

(pei − 1), then

Dr(G) = rped +
d−1∑
i=1

pei − k + 1.
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The r-wise Davenport Constant

Consider a p-group G = Cpe1 × Cpe2 × · · · × Cped with 1 ≤ ei ≤ ei+1 for
i ∈ [1, d − 1].

η

ηr(G) = min {k ∈ N | ∀ S ∈ F(G) ∋ |S| ≥ k, 0r
small ∈ σ(S)}.

By 0small we mean a small zero subsum, i.e., a subsum of length ≤ exp(G).

Theorem (Fan, Gao, Wang, Zhong (2013))
m ∈ N; let H be a finite abelian group ∋

exp(H)|m
m ≥ D(H)

D(Cm × Cm × H) = 2m + D(H) − 2
Then η1(Cm × H) ≤ 2m + D(H) − 2.
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The r-wise Davenport Constant

Lemma 1

If ped ≥ 1 +
d−1∑
i=1

(pei − 1), then η(G) ≤ D(G) + exp(G).

Lemma 2
1 ≤ r ∈ Z. If η(G) ≤ D(G) + exp(G), then ηr(G) ≤ D(G) + r exp(G).

Lemma 3
For such a group, Dr(G) ≤ ηr(G) = D(G) + (r − 1) exp(G).

The theorem for p-groups has nothing more to prove. A sketch can be
found in the monograph by Geroldinger and Halter-Koch, where it is
proved as a byproduct of algebraic ideas developed in the book. This
approach, though in essence is the same, involves more elementary ideas
and can be grasped by a first-year undergraduate who is attentive enough.
The combinatorial approach provides, more than the proof, an intuitive
idea in the structure of the group invariants.
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The r-wise Davenport Constant

Any better than for p-groups?

Theorem (Delorme, Ordaz and Quiroz (2001))

D (Cp × Cp × Cpnm) = D∗ (Cp × Cp × Cpnm)

where p is prime, n ≥ 2, gcd (m, pn) = 1.

We could get this far with exact values:
For G = Cpe1 × Cpe2 × · · · × Cped−1 × Cmped with ei ≤ ei+1 such that

ped ≥ 1 +
d−1∑
i=1

(pei − 1),

Dr(G) = rmped +
d−1∑
i=1

pei − d + 1.
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The r-wise Davenport Constant

Our result:
G ∼= Cn1 × Cn2 × · · · × Cnd (n1, n2, . . . , nd ∈ N)

i.e., G = C∏ℓ

j=1 p
e(j)
1

j

× C∏ℓ

j=1 p
e(j)
2

j

× · · · × C∏ℓ

j=1 p
e(j)
d

j

where

w.l.o.g. e(j)
i ∈ Z ∋ 0 ≤ e(j)

i ≤ e(j)
i+1 ∀ 1 ≤ j ≤ ℓ

but all e(j)
i ’s are not zero for each j ∈ {1, . . . , ℓ} (1 ≤ i ≤ d)

p1, p2, . . . , pℓ primes ∋ pe(j)
d

j ≥ 1 +
∑k−1

i=1

(
pe(j)

i
j − 1

)
∀ j = 1, 2, . . . , ℓ.

Let φ(pj) =
∑d−1

i=1 pe(j)
i

j − d + 1 for j = 1, . . . , ℓ.

Then, r
ℓ∏

j=1
pe(j)

d
j +

d−1∑
i=1

 ℓ∏
j=1

pe(j)
i

j − 1

 ≤ Dr(G)

≤ r
ℓ∏

j=1
pe(j)

d
j +

ℓ−1∑
m=1

 ℓ∏
j=m+1

pe(j)
d

j

 φ(pm)

 + φ(pℓ).
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pe(j)

d
j +

d−1∑
i=1

 ℓ∏
j=1

pe(j)
i

j − 1

 ≤ Dr(G)

≤ r
ℓ∏

j=1
pe(j)

d
j

+
ℓ−1∑
m=1

 ℓ∏
j=m+1

pe(j)
d

j

 φ(pm)

 + φ(pℓ).
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The r-wise Davenport Constant

Our result:
G ∼= Cn1 × Cn2 × · · · × Cnd (n1, n2, . . . , nd ∈ N)
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j=1 p
e(j)
1

j

× C∏ℓ

j=1 p
e(j)
2

j

× · · · × C∏ℓ

j=1 p
e(j)
d

j

where

w.l.o.g. e(j)
i ∈ Z ∋ 0 ≤ e(j)

i ≤ e(j)
i+1 ∀ 1 ≤ j ≤ ℓ
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The r-wise Davenport Constant

My only justification is that this is not as pointless as it looks. In fact, the
formula, though painful for the eye, gives quite nice output.

Define, error = upper bound − lower bound
lower bound .

We observe that
1 increasing r
2 with larger primes p1, . . . , pℓ

3 higher powers ej
i (j = 1, . . . , ℓ; i = 1, . . . , d)

error → 0

i.e., upper bound
lower bound → 1

.
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The r-wise Davenport Constant

[error has been throughout multiplied by 100 for easy visualization]

Group r = 1 r = 2 r = 3 r = 4 r = 5
UB 41778 68778 95778 122778 149778

C2.3.5 ⊕ C22.32.52 ⊕ C23.33.53 LB 27928 54928 81928 108928 135928
diff 13850
err 49.59181 25.21483 16.90509 12.71482 10.18922

UB 1596033 2753658 3911283 5068908 6226533
C3.5.7 ⊕ C32.52.72 ⊕ C33.53.73 LB 1168753 2326378 3484003 4.641628 5799253

diff 427280
err 36.55862 18.36675 12.26405 9.205391 7.367845

UB 69921553 126988178 184054803 241121428 298188053
C5.7.11 ⊕ C52.72.112 ⊕ C53.73.113 LB 57215233 114281858 171348483 228415108 285481733

diff 12706320
err 22.207932 11.118405 7.415484 5.562819 4.450835
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The r-wise Davenport Constant

Group r = 1 r = 5
UB 3292613286703417 16039460139018988

C31.47.101 ⊕ C312.472.1012 ⊕ C313.473.1013 LB 3186733368408697 15933580220724268
diff 105879918294720
err 3.3225220 0.6645080

C312.473.1013 ⊕ C318.479.1015 ⊕ C3117.4721.1017

r = 1
Upper bound=314378927707039117076594641960472205699918246393796134855347548904541388800
Lower bound= 314378927707027215691704348813743973043171844658271204789424845095104937984
Difference= 11890447077876842522672189603253739181827333079849168416014336

Error= 0.0000000000037822023

r = 5
Upper bound= 1571894638535147728759342621748217544441028696720224309918829150723580624896
Lower bound=1571894638535135877591266211694935422470597680646030708671750002626420277248

Error= 0.000000000000756440
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The r-wise Davenport Constant

In fact, I can prove

Result

The error becomes negligible, i.e., upper bound
lower bound → 1 if

either pj’s are large;
e(j)

i ’s are higher natural numbers;
r increases.

difference = upper bound − lower bound

=
ℓ−1∑
m=1

 ℓ∏
j=m+1

pe(j)
d

j

 φ(pm)

 + φ(pℓ) −
d−1∑
i=1

 ℓ∏
j=1

pe(j)
i

j − 1



INDEPENDENT OF r

For d = 1, these two bounds coincide.
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The r-wise Davenport Constant

We are able to conclude about Dr(G) for certain class of G with
exp(G) = ped , where ed > 1

Question
What if exp(G) = p (i.e., group of the form Cd

p for d ≥ 3)

Conjecture 3

For prime p and r, d ∈ N, Dr((Cp)d) = (r + d − 1)p − (d − 1).

For d = 2, the conjecture is satisfied ∀ r.
If the Conjecture is true, we have

Relating the Conjectures
Let p, q be distinct primes and G ∼= Cd−1

p × Cpq of rank d ≥ 3. If the
previous Conjecture holds for prime p, then D(G) = D∗(G).

D∗(G) = (r + d − 1)p − (d − 1) in this case.
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