The Davenport Constant For Sinite Abelian Groups And Its r=wise Generalization

Anamitro Biswas anamitroappu@gmail.com

[based on joint work with Dr. Eshita Mazumdar]

Students' Talk Jan 18th 2024

Anamitro Biswas (TRIM, IAI, TCG-CREST)

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 1/31

< 日 > < 同 > < 回 > < 回 > < 回 > <

Table of Contents

2) The r=wise Davenport Constant

Anamitro Biswas (TRIM, IAI, TCG-CREST)

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Like many intriguing problems in combinatorial number theory, it all sort of began with a simple result published by Paul Erdős, Adam Ginzburg and A. Ziv. It says that each set of 2n - 1 integers contains some subset of n elements the sum of which is a multiple of n

Like many intriguing problems in combinatorial number theory, it all sort of began with a simple result published by Paul Erdős, Adam Ginzburg and A. Ziv. It says that each set of 2n - 1 integers contains some subset of n elements the sum of which is a multiple of n, which is equivalently said as:

Like many intriguing problems in combinatorial number theory, it all sort of began with a simple result published by Paul Erdős, Adam Ginzburg and A. Ziv. It says that each set of 2n - 1 integers contains some subset of n elements the sum of which is a multiple of n, which is equivalently said as: (G, +, 0) finite abelian group.

Like many intriguing problems in combinatorial number theory, it all sort of began with a simple result published by Paul Erdős, Adam Ginzburg and A. Ziv. It says that each set of 2n - 1 integers contains some subset of *n* elements the sum of which is a multiple of *n*, which is equivalently said as: (G, +, 0) finite abelian group. *G*-sequence of length *k*: $S = (x_1, \ldots, x_k)$ with $x_i \in G$ for each *i*.

Like many intriguing problems in combinatorial number theory, it all sort of began with a simple result published by Paul Erdős, Adam Ginzburg and A. Ziv. It says that each set of 2n - 1 integers contains some subset of *n* elements the sum of which is a multiple of *n*, which is equivalently said as: (G, +, 0) finite abelian group. *G*-sequence of length *k*: $S = (x_1, \ldots, x_k)$ with $x_i \in G$ for each *i*.

zero-sum G-sequence: $S = (x_1, \ldots, x_k) \ni \sum_i x_i = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Like many intriguing problems in combinatorial number theory, it all sort of began with a simple result published by Paul Erdős, Adam Ginzburg and A. Ziv. It says that each set of 2n - 1 integers contains some subset of *n* elements the sum of which is a multiple of *n*, which is equivalently said as: (G, +, 0) finite abelian group. *G*-sequence of length *k*: $S = (x_1, ..., x_k)$ with $x_i \in G$ for each *i*. *zero-sum G*-sequence: $S = (x_1, ..., x_k) \ni \sum_i x_i = 0$.

Theorem (Erdős, Ginzburg and Ziv, 1961)

Every (2n - 1)-length sequence from C_n shall have a zero-sum subsequence of length n.

This started the study of zero-sum problems in Additive group theory.

3. 3

This started the study of zero-sum problems in Additive group theory.

 conditions which ensure that given sequences have non-empty zero-sum subsequences with prescribed properties.

This started the study of zero-sum problems in Additive group theory.

- conditions which ensure that given sequences have non-empty zero-sum subsequences with prescribed properties.
- Structure of extremal sequences which have no zero-sum subsequences.

This started the study of zero-sum problems in Additive group theory.

- conditions which ensure that given sequences have non-empty zero-sum subsequences with prescribed properties.
- Structure of extremal sequences which have no zero-sum subsequences.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 5/31

3

<ロト <回ト < 回ト < 回ト < 回ト -

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min \{ |S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum} \}$

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min\{|S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum}\}$

called the *Davenport constant* for group G.

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min\{|S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum}\}$

called the *Davenport constant* for group *G*. Variations of the problem find it convenient to deal with multiplicative notation, a sequence being a member of the free abelian group $\mathcal{F}(G)$ generated by *G*.

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min\{|S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum}\}$

called the *Davenport constant* for group *G*. Variations of the problem find it convenient to deal with multiplicative notation, a sequence being a member of the free abelian group $\mathcal{F}(G)$ generated by *G*. However, we shall not be needing such complicated notations: we shall denote by

• *juxtaposition* when elements form a **sequence**, and by

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min \{ |S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum} \}$

called the *Davenport constant* for group *G*. Variations of the problem find it convenient to deal with multiplicative notation, a sequence being a member of the free abelian group $\mathcal{F}(G)$ generated by *G*. However, we shall not be needing such complicated notations: we shall denote by

- *juxtaposition* when elements form a **sequence**, and by
- *addition* the **group operation** that gives another element of the group.

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min\{|S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum}\}$

called the *Davenport constant* for group *G*. Variations of the problem find it convenient to deal with multiplicative notation, a sequence being a member of the free abelian group $\mathcal{F}(G)$ generated by *G*. However, we shall not be needing such complicated notations: we shall denote by

- *juxtaposition* when elements form a **sequence**, and by
- addition the group operation that gives another element of the group.

Havold Devenport

Baayen, Erdős and Davenport posed the problem to determine

 $D(G) = \min\{|S| : S \in \mathcal{F}(G) \text{ has a non-trivial zero subsum}\}$

called the *Davenport constant* for group *G*. Variations of the problem find it convenient to deal with multiplicative notation, a sequence being a member of the free abelian group $\mathcal{F}(G)$ generated by *G*. However, we shall not be needing such complicated notations: we shall denote by

- *juxtaposition* when elements form a **sequence**, and by
- addition the group operation that gives another element of the group.

Havold Devenport

An Upper Bound

Theorem

 $D(G) \leq |G|$

Proof. Let $S = (x_1, x_2, \dots, x_n) \in \mathcal{F}(G)$ where |G| = n. Consider

$$s_1 = x_1$$

$$s_2 = x_1 + x_2$$

$$\vdots$$

$$s_n = x_1 + x_2 + \dots + x_n$$

- All s_i 's are distinct, so $0 \in \{s_1, \ldots, s_n\}$.
- By Pigeon-Hole Principle, ∃ i ≠ j ∋ s_i = s_j. Then, (x_{i+1},..., x_j) is a zero-sum subsequence.

So, $D(G) \leq |G|$.

Breaking Up Into Cyclic Groups

Particularly for $G = C_n = \langle 1 \rangle$ (the cyclic group of order *n*) we can construct the sequence $S = \underbrace{11 \dots 1}_{n-1}$ such that $0 \notin [S]$. Thus

 $D(C_n) \ge n \Rightarrow D(C_n) = n.$

We denote by [S] the set of subsums of sequence S including $\sigma(S)$.

Breaking Up Into Cyclic Groups

Particularly for $G = C_n = \langle 1 \rangle$ (the cyclic group of order *n*) we can construct the sequence $S = \underbrace{11 \dots 1}_{n-1}$ such that $0 \notin [S]$. Thus

 $D(C_n) \ge n \Rightarrow D(C_n) = n.$ We denote by [S] the set of subsums of sequence S including $\sigma(S)$.

[Olson, 1969]

If $G \cong C_{n_1} \times C_{n_2}$, then $D(G) = n_1 + n_2 - 1$.

To prove this, Olson used a tool that'd become extremely useful in future.

Theorem

Let $G \cong H \times K$; |H| = h, |K| = k and h|k. If S is a sequence over $G \ni |S| \ge h + k - 1$, then $0 \in [S]$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Breaking Up Into Cyclic Groups

Particularly for $G = C_n = \langle 1 \rangle$ (the cyclic group of order *n*) we can construct the sequence $S = \underbrace{11 \dots 1}_{n-1}$ such that $0 \notin [S]$. Thus

 $D(C_n) \ge n \Rightarrow D(C_n) = n.$ We denote by [S] the set of subsums of sequence S including $\sigma(S)$.

[Olson, 1969]

If $G \cong C_{n_1} \times C_{n_2}$, then $D(G) = n_1 + n_2 - 1$.

To prove this, Olson used a tool that'd become extremely useful in future.

Theorem

Let $G \cong H \times K$; |H| = h, |K| = k and h|k. If S is a sequence over $G \ni |S| \ge h + k - 1$, then $0 \in [S]$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

The Classical Davenport Constant

Anamitro Biswas (TRIM, IAI, TCG-CREST)

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 8/31

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

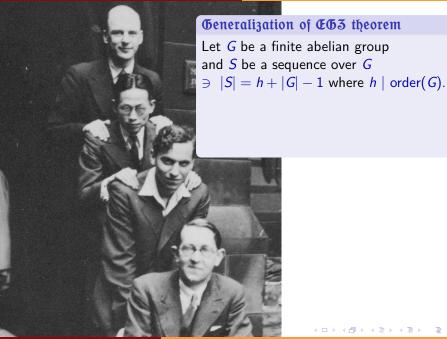
Anamitro Biswas (TRIM, IAI, TCG-CREST

(r-wise) Davenport constant

★ ∃ ► < ∃ ►</p> Students' talk (Jan 18th 2024) 8/31

< □ > < /□ >

The Classical Davenport Constant



Anamitro Biswas (TRIM, IAI, TCG-CREST

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 8/31

< □ > < □ > < □ > < □ > < □ > < □ >

Generalization of EG3 theorem

Let G be a finite abelian group and S be a sequence over G $\exists |S| = h + |G| - 1$ where $h \mid \text{order}(G)$.

> Embed *G* in the direct product $C_h \times G$. Let 1_h be a generator of C_h . Consider the sequence

> > $(1_h,S)=\prod (1_h,g)$ g∈S

Applying Theorem [?], we get $0 \in (1_h, S)$. But since order $(1_h) = h$, that zero-sum subsequence must be of length h.

8/31

Students' talk (Jan 18th 2024)

(r-wise) Davenport constant

• (Olson, 1968) For a *p*-group $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$

2

イロト 不得 トイヨト イヨト

• (Olson, 1968) For a *p*-group $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$

$$D(G) = 1 + \sum_{i=1}^{d} (p^{e_i} - 1).$$

2

イロト 不得 トイヨト イヨト

• (Olson, 1968) For a *p*-group $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$

$$D(G) = 1 + \sum_{i=1}^{d} (p^{e_i} - 1).$$

Conjecture (Olson)

For any

イロト イ団ト イヨト イヨト 二日

• (Olson, 1968) For a *p*-group $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$

$$D(G) = 1 + \sum_{i=1}^{d} (p^{e_i} - 1).$$

Conjecture (Olson) For any $G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_d} \ni n_i | n_{i+1},$

イロト イポト イヨト イヨト 二日

• (Olson, 1968) For a *p*-group $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$

$$D(G) = 1 + \sum_{i=1}^{d} (p^{e_i} - 1).$$

Conjecture (Olson) For any $G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_d} \ni n_i | n_{i+1},$ $D(G) = 1 + \sum_{i=1}^d (n_i - 1) = D^*(G).$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

• (Olson, 1968) For a *p*-group $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$

$$D(G) = 1 + \sum_{i=1}^{d} (p^{e_i} - 1).$$

Conjecture (Olson) For any $G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_d} \ni n_i | n_{i+1},$ $D(G) = 1 + \sum_{i=1}^d (n_i - 1) = D^*(G).$

Is this conjecture true?

Actually, it isn't.

Anamitro Biswas (TRIM, IAI, TCG-CREST

Students' talk (Jan 18th 2024) 10 / 31

æ

<ロト <問ト < 国ト < 国ト

Actually, it isn't. This conjecture is false in general. For infinitely many groups of rank 4 this conjecture does not hold.

Geroldinger and Schneider, 1992

For odd $m, n \ni 3 \le m | n$,

$$D\left(C_m\oplus C_n^2\oplus C_{2n}\right)>D^*\left(C_m\oplus C_n^2\oplus C_{2n}\right)$$

э

Actually, it isn't. This conjecture is false in general. For infinitely many groups of rank 4 this conjecture does not hold.

Geroldinger and Schneider, 1992

For odd $m, n \ni 3 \le m | n$,

$$D\left(C_m\oplus C_n^2\oplus C_{2n}\right)>D^*\left(C_m\oplus C_n^2\oplus C_{2n}\right)$$

Yet it remains to be seen

- for which groups Olson's conjecture holds
- Whether true for all groups of rank 3.

1. Bhowmik and Schlage-Puchta $D(C_3 \oplus C_3 \oplus C_{3d}) = D^*(C_3 \oplus C_3 \oplus C_{3d}) \ \forall \ d \in \mathbb{N}.$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Students' talk (Jan 18th 2024) 11/31

1. Bhowmik and Schlage-Puchta $D(C_3 \oplus C_3 \oplus C_{3d}) = D^*(C_3 \oplus C_3 \oplus C_{3d}) \forall d \in \mathbb{N}.$

Conjecture

Fixed $5 \leq p \in \mathbb{P}$,

Anamitro Biswas (TRIM, IAI, TCG-CREST)

1. Bhowmik and Schlage-Puchta $D(C_3 \oplus C_3 \oplus C_{3d}) = D^*(C_3 \oplus C_3 \oplus C_{3d}) \forall d \in \mathbb{N}.$

Conjecture

Fixed $5 \leq p \in \mathbb{P}$, $G \cong C_p^3 \oplus C_2$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

1. Bhowmik and Schlage-Puchta $D(C_3 \oplus C_3 \oplus C_{3d}) = D^*(C_3 \oplus C_3 \oplus C_{3d}) \forall d \in \mathbb{N}.$

Conjecture

Fixed $5 \le p \in \mathbb{P}$, $G \cong C_p^3 \oplus C_2$. $S = (x_1, y_1) \dots (x_{4p-2}, y_{4p-2}) \in \mathcal{F}(G) \ni$

$$y_1 = \dots = y_r = 1$$
$$y_{r+1} = \dots = y_{4p-2} = 0$$

for even $r \in [2p + 2, 4p - 6]$.

1. Bhowmik and Schlage-Puchta $D(C_3 \oplus C_3 \oplus C_{3d}) = D^*(C_3 \oplus C_3 \oplus C_{3d}) \forall d \in \mathbb{N}.$

Conjecture

Fixed $5 \le p \in \mathbb{P}$, $G \cong C_p^3 \oplus C_2$. $S = (x_1, y_1) \dots (x_{4p-2}, y_{4p-2}) \in \mathcal{F}(G) \ni$

$$y_1 = \dots = y_r = 1$$

 $y_{r+1} = \dots = y_{4p-2} = 0$

for even $r \in [2p + 2, 4p - 6]$. Then $0 \in [S]$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

1. Bhowmik and Schlage-Puchta $D(C_3 \oplus C_3 \oplus C_{3d}) = D^*(C_3 \oplus C_3 \oplus C_{3d}) \forall d \in \mathbb{N}.$

Conjecture

Fixed $5 \le p \in \mathbb{P}$, $G \cong C_p^3 \oplus C_2$. $S = (x_1, y_1) \dots (x_{4p-2}, y_{4p-2}) \in \mathcal{F}(G) \ni$

$$y_1 = \dots = y_r = 1$$

 $y_{r+1} = \dots = y_{4p-2} = 0$

for even $r \in [2p + 2, 4p - 6]$. Then $0 \in [S]$.

2. Sheikh, 2017 $D(C_p \oplus C_p \oplus C_{2p}) = D^*(C_p \oplus C_p \oplus C_{2p}) \forall p \in \mathbb{P}$ for which the Conjecture holds.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

The conjecture is yet unproved, neither has any counterexample been found.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3. Sheikh, 2017 $D(C_5 \oplus C_5 \oplus C_{10}) = D^*(C_5 \oplus C_5 \oplus C_{10} = 18.$

3. Sheikh, 2017 $D(C_5 \oplus C_5 \oplus C_{10}) = D^*(C_5 \oplus C_5 \oplus C_{10} = 18.$

But the computer is as hopeless with further mathematics as ChatGPT is with poetry. So, it gets us only that far with exact values.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3. Sheikh, 2017 $D(C_5 \oplus C_5 \oplus C_{10}) = D^*(C_5 \oplus C_5 \oplus C_{10} = 18.$

But the computer is as hopeless with further mathematics as ChatGPT is with poetry. So, it gets us only that far with exact values.

4. Sheikh, 2017 $D(C_5 \oplus C_5 \oplus C_{5d}) = D^* (C_5 \oplus C_5 \oplus C_{5d} + 4 \forall d \in \mathbb{N}.$

< ロ ト < 同 ト < 三 ト < 三 ト - 三 .

3. Sheikh, 2017 $D(C_5 \oplus C_5 \oplus C_{10}) = D^*(C_5 \oplus C_5 \oplus C_{10} = 18.$

But the computer is as hopeless with further mathematics as ChatGPT is with poetry. So, it gets us only that far with exact values.

4. Sheikh, 2017 $D(C_5 \oplus C_5 \oplus C_{5d}) = D^* (C_5 \oplus C_5 \oplus C_{5d} + 4 \forall d \in \mathbb{N}.$

5. Deforme et al. If $p \in \mathbb{P}$, $2 \le n \in \mathbb{N}$ & $gcd(m, p^n) = 1$, then $D(C_p \times C_p \times C_{p^n m} = D^*(C_p \times C_p \times C_{p^n m}).$

Summer 2022, we were looking at further generalizations of this.

Fix $p, q \ (p \neq q), p \in \mathbb{P}$; define $G := C_p^d \times C_q$. Let m = p(q+2) - 2. Let $S = (x_1, y_1) \dots (x_m, y_m) \in \mathcal{F} \left(C_p^d \times C_q \right)$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

イロト 不得 トイヨト イヨト 二日

Fix
$$p, q \ (p \neq q), p \in \mathbb{P}$$
; define $G := C_p^d \times C_q$.
Let $m = p(q+2) - 2$.
Let $S = (x_1, y_1) \dots (x_m, y_m) \in \mathcal{F} \left(C_p^d \times C_q \right)$. Suppose
 $y_{\sum_{i=1}^t r_i + 1} = \dots = y_{\sum_{i=1}^{t+1} r_i} = t + 1 \ (t \in [0, q - 1])$
where $r = \sum_{i=1}^{q-1} r_i$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Students' talk (Jan 18th 2024) 13/31

◆□ → ◆圖 → ◆ ヨ → ◆ ヨ → ○ ヨ

Fix
$$p, q \ (p \neq q), p \in \mathbb{P}$$
; define $G := C_p^d \times C_q$.
Let $m = p(q+2) - 2$.
Let $S = (x_1, y_1) \dots (x_m, y_m) \in \mathcal{F} \left(C_p^d \times C_q \right)$. Suppose
 $y_{\sum_{i=1}^t r_i + 1} = \dots = y_{\sum_{i=1}^{t+1} r_i} = t + 1 \ (t \in [0, q - 1])$
where $r = \sum_{i=1}^{q-1} r_i$. If
 $r \in [pq + 1, p(q + 2) - 2]$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

◆□ → ◆圖 → ◆ ヨ → ◆ ヨ → ○ ヨ

Fix
$$p, q \ (p \neq q), p \in \mathbb{P}$$
; define $G := C_p^d \times C_q$.
Let $m = p(q+2) - 2$.
Let $S = (x_1, y_1) \dots (x_m, y_m) \in \mathcal{F} \left(C_p^d \times C_q \right)$. Suppose
 $y_{\sum_{i=1}^t r_i + 1} = \dots = y_{\sum_{i=1}^{t+1} r_i} = t + 1 \ (t \in [0, q-1])$
where $r = \sum_{i=1}^{q-1} r_i$. If
 $r \in [pq + 1, p(q+2) - 2]$ and
 $\sum_{i=1}^{q-1} ir_i \equiv 0 \pmod{q}$,

Anamitro Biswas (TRIM, IAI, TCG-CREST)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fix
$$p, q \ (p \neq q), p \in \mathbb{P}$$
; define $G := C_p^d \times C_q$.
Let $m = p(q+2) - 2$.
Let $S = (x_1, y_1) \dots (x_m, y_m) \in \mathcal{F} \left(C_p^d \times C_q \right)$. Suppose
 $y_{\sum_{i=1}^t r_i + 1} = \dots = y_{\sum_{i=1}^{t+1} r_i} = t + 1 \ (t \in [0, q - 1])$
where $r = \sum_{i=1}^{q-1} r_i$. If
1 $r \in [pq + 1, p(q + 2) - 2]$ and
2 $\sum_{i=1}^{q-1} ir_i \equiv 0 \pmod{q}$,
then $0 \in [S]$.

3

イロン イ理 とくほとう ほん

Fix
$$p, q \ (p \neq q), p \in \mathbb{P}$$
; define $G := C_p^d \times C_q$.
Let $m = p(q+2) - 2$.
Let $S = (x_1, y_1) \dots (x_m, y_m) \in \mathcal{F} \left(C_p^d \times C_q \right)$. Suppose
 $y_{\sum_{i=1}^t r_i + 1} = \dots = y_{\sum_{i=1}^{t+1} r_i} = t + 1 \ (t \in [0, q - 1])$
where $r = \sum_{i=1}^{q-1} r_i$. If
1 $r \in [pq + 1, p(q + 2) - 2]$ and
2 $\sum_{i=1}^{q-1} ir_i \equiv 0 \pmod{q}$,
then $0 \in [S]$.

3

イロン イ理 とくほとう ほん

Let p be a prime such that Conjecture 2 holds. Then, for group $G = C_p^d \times C_q$,

 $D(G)=D^*(G).$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Let p be a prime such that Conjecture 2 holds. Then, for group $G = C_p^d \times C_q$,

 $D(G)=D^*(G).$

It's currently submitted and under review.

イロト 不得 トイヨト イヨト 二日

Let p be a prime such that Conjecture 2 holds. Then, for group $G = C_p^d \times C_q$,

 $D(G) = D^*(G).$

It's currently submitted and under review.

• (Bhowmik and Schlage-Puchta, 2007) For $G \cong C_3 \times C_3 \times C_{3d}$, $d \in \mathbb{N}$, $D(G) = D^*(G)$. So Conjecture 2 is true for p = 3 at least.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let p be a prime such that Conjecture 2 holds. Then, for group $G = C_p^d \times C_q$,

 $D(G) = D^*(G).$

It's currently submitted and under review.

- (Bhowmik and Schlage-Puchta, 2007) For $G \cong C_3 \times C_3 \times C_{3d}$, $d \in \mathbb{N}$, $D(G) = D^*(G)$. So Conjecture 2 is true for p = 3 at least.
- One can observe that Conjecture 3 is much stronger than Conjecture 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let p be a prime such that Conjecture 2 holds. Then, for group $G = C_p^d \times C_q$,

 $D(G) = D^*(G).$

It's currently submitted and under review.

- (Bhowmik and Schlage-Puchta, 2007) For $G \cong C_3 \times C_3 \times C_{3d}$, $d \in \mathbb{N}$, $D(G) = D^*(G)$. So Conjecture 2 is true for p = 3 at least.
- One can observe that Conjecture 3 is much stronger than Conjecture 2, because

$$D_r\left(C_p^d\right) = (r+d-1)p - (d-1)$$

Anamitro Biswas (TRIM, IAI, TCG-CREST

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let p be a prime such that Conjecture 2 holds. Then, for group $G = C_p^d \times C_q$,

 $D(G) = D^*(G).$

It's currently submitted and under review.

- (Bhowmik and Schlage-Puchta, 2007) For $G \cong C_3 \times C_3 \times C_{3d}$, $d \in \mathbb{N}$, $D(G) = D^*(G)$. So Conjecture 2 is true for p = 3 at least.
- One can observe that Conjecture 3 is much stronger than Conjecture 2, because

$$D_r\left(C_p^d\right) = (r+d-1)p - (d-1)$$

$$\implies D\left(C_p^{d-1}\times C_{pr}\right)=(r+d-1)p-(d-1).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Students' talk (Jan 18th 2024) 15/31

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There can be a number of possible ways to generalize the idea of Davenport constant which just requires *one* sequence that adds to *zero*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

There can be a number of possible ways to generalize the idea of Davenport constant which just requires *one* sequence that adds to *zero*.

Definition (Girard and Schmid, 2019) For $r \in \mathbb{N}$, $D_r(G) = \min \{k \in \mathbb{N} \mid \forall S \in \mathcal{F}(G) \ni |S| \ge k,$ S has r disjoint zero-sum subsequences.}

- 20

There can be a number of possible ways to generalize the idea of Davenport constant which just requires *one* sequence that adds to *zero*.

Definition (Girard and Schmid, 2019) For $r \in \mathbb{N}$, $D_r(G) = \min \{k \in \mathbb{N} \mid \forall S \in \mathcal{F}(G) \ni |S| \ge k,$ S has r disjoint zero-sum subsequences.}

• $D_r(G) \le D_{r+1}(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There can be a number of possible ways to generalize the idea of Davenport constant which just requires *one* sequence that adds to *zero*.

Definition (Girard and Schmid, 2019) For $r \in \mathbb{N}$, $D_r(G) = \min \{k \in \mathbb{N} \mid \forall S \in \mathcal{F}(G) \ni |S| \ge k,$ S has r disjoint zero-sum subsequences.}

D_r(G) ≤ D_{r+1}(G).
D_r(G) = D(G) for r = 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There can be a number of possible ways to generalize the idea of Davenport constant which just requires *one* sequence that adds to *zero*.

Definition (Girard and Schmid, 2019) For $r \in \mathbb{N}$, $D_r(G) = \min \{k \in \mathbb{N} \mid \forall S \in \mathcal{F}(G) \ni |S| \ge k,$ S has r disjoint zero-sum subsequences.}

• $D_r(G) \le D_{r+1}(G)$.

• $D_r(G) = D(G)$ for r = 1.

Looking back at the past, we shall present the results that were discovered for D_r almost in the same order as with D.

イロト 不得下 イヨト イヨト 二日

Girard and Schmid, 2019 • If $n, r \in \mathbb{N}$,

Anamitro Biswas (TRIM, IAI, TCG-CREST)

 $D_r(C_n)$

Students' talk (Jan 18th 2024) 17 / 31

3

• If $n, r \in \mathbb{N}$,

 $D_r(C_n) = rn.$

Maximal r-wise zero-sum free sequence: $(1, 0, ..., 0)^n (0, 1, 0, ..., 0)^n ... (0, ..., 0, 1, 0^n (0, ..., 0, 1)^{n-1}$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

イロト 不得 トイヨト イヨト 二日

• If $n, r \in \mathbb{N}$,

 $D_r(C_n) = rn.$

Maximal r-wise zero-sum free sequence: $(1, 0, ..., 0)^n (0, 1, 0, ..., 0)^n ... (0, ..., 0, 1, 0^n (0, ..., 0, 1)^{n-1}$ • Let $G \cong C_m \times C_n$ where m|n.

Anamitro Biswas (TRIM, IAI, TCG-CREST

• If $n, r \in \mathbb{N}$,

$$D_r(C_n) = rn.$$

Maximal r-wise zero-sum free sequence: $(1,0,\ldots,0)^n(0,1,0,\ldots,0)^n\ldots(0,\ldots,0,1,0^n(0,\ldots,0,1)^{n-1})$ • Let $G \cong C_m \times C_n$ where m|n. Then,

 $D_r(G)=rn+m-1.$

Anamitro Biswas (TRIM, IAI, TCG-CREST

• If $n, r \in \mathbb{N}$,

$$D_r(C_n) = rn.$$

Maximal r-wise zero-sum free sequence: $(1, 0, ..., 0)^n (0, 1, 0, ..., 0)^n ... (0, ..., 0, 1, 0^n (0, ..., 0, 1)^{n-1}$

• Let $G \cong C_m \times C_n$ where m|n. Then,

$$D_r(G)=rn+m-1.$$

• What about higher ranks.

Anamitro Biswas (TRIM, IAI, TCG-CREST

Students' talk (Jan 18th 2024) 17 / 31

for p=groups

Let p be an odd prime and $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}} \ni e_i \leq e_{i+1}$. Marimal lower bound:

$$\underbrace{(\underbrace{1,0,\ldots,0}_{d})^{rp^{e_d}-1}(0,1,\ldots,0)^{p^{e_d-1}-1}\ldots(0,0,\ldots,0,1)^{p^{e_1}-1}}_{i}.$$

$$\therefore D_r(G) \ge rp^{e_d} + \sum_{i=1}^{d-1} p^{e_i} - k + 1.$$

If
$$p^{e_d} \ge 1 + \sum_{i=1}^{d-1} (p^{e_i} - 1)$$
,

イロト 不得 トイヨト イヨト 一日

for p=groups

Let p be an odd prime and $G \cong C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}} \ni e_i \leq e_{i+1}$. Maximal lower bound:

$$\underbrace{(\underbrace{1,0,\ldots,0}_{d})^{rp^{e_d}-1}(0,1,\ldots,0)^{p^{e_d-1}-1}\ldots(0,0,\ldots,0,1)^{p^{e_1}-1}}_{\therefore D_r(G) \ge rp^{e_d} + \sum_{i=1}^{d-1} p^{e_i} - k + 1.$$

Theorem (Target to prove)

If
$$p^{e_d} \geq 1 + \sum_{i=1}^{d-1}{(p^{e_i}-1)}$$
, then

$$D_r(G) = rp^{e_d} + \sum_{i=1}^{d-1} p^{e_i} - k + 1.$$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

イロト 不得 トイヨト イヨト 一日

Consider a *p*-group $G = C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$ with $1 \le e_i \le e_{i+1}$ for $i \in [1, d-1]$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 19/31

- 20

Consider a *p*-group $G = C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$ with $1 \le e_i \le e_{i+1}$ for $i \in [1, d-1]$.

 η

 $\eta_r(G) = \min \{ k \in \mathbb{N} \mid \forall S \in \mathcal{F}(G) \ni |S| \ge k, 0^r_{\mathsf{small}} \in \sigma(S) \}.$

By 0_{small} we mean a small zero subsum, i.e., a subsum of length $\leq \exp(G)$.

Consider a *p*-group $G = C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_d}}$ with $1 \le e_i \le e_{i+1}$ for $i \in [1, d-1]$.

 η

 $\eta_r(G) = \min \{ k \in \mathbb{N} \mid \forall S \in \mathcal{F}(G) \ni |S| \ge k, 0^r_{\mathsf{small}} \in \sigma(S) \}.$

By 0_{small} we mean a small zero subsum, i.e., a subsum of length $\leq \exp(G)$.

Theorem (Fan, Gao, Wang, Zhong (2013))

 $m \in \mathbb{N}$; let H be a finite abelian group \ni

- *exp*(*H*)|*m*
- $m \ge D(H)$
- $D(C_m \times C_m \times H) = 2m + D(H) 2$

Then $\eta_1(C_m \times H) \leq 2m + D(H) - 2$.

If
$$p^{e_d} \geq 1 + \sum_{i=1}^{d-1} (p^{e_i} - 1)$$
, then $\eta(\mathcal{G}) \leq D(\mathcal{G}) + \exp(\mathcal{G})$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ シ へ ○ Students' talk (Jan 18th 2024) 20 / 31

If
$$p^{e_d} \geq 1 + \sum_{i=1}^{d-1} (p^{e_i} - 1)$$
, then $\eta(G) \leq D(G) + \exp(G)$.

Lemma 2

 $1 \leq r \in \mathbb{Z}$. If $\eta(G) \leq D(G) + \exp(G)$, then $\eta_r(G) \leq D(G) + r \exp(G)$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

If
$$p^{e_d} \geq 1 + \sum_{i=1}^{d-1} (p^{e_i} - 1)$$
, then $\eta(G) \leq D(G) + \exp(G)$.

Lemma 2

 $1 \leq r \in \mathbb{Z}$. If $\eta(G) \leq D(G) + \exp(G)$, then $\eta_r(G) \leq D(G) + r \exp(G)$.

Lemma 3

For such a group, $D_r(G) \leq \eta_r(G) = D(G) + (r-1)\exp(G)$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

If
$$p^{e_d} \geq 1 + \sum_{i=1}^{d-1} (p^{e_i} - 1)$$
, then $\eta(G) \leq D(G) + \exp(G)$.

Lemma 2

 $1 \leq r \in \mathbb{Z}$. If $\eta(G) \leq D(G) + \exp(G)$, then $\eta_r(G) \leq D(G) + r \exp(G)$.

Lemma 3

For such a group, $D_r(G) \leq \eta_r(G) = D(G) + (r-1)\exp(G)$.

The theorem for *p*-groups has nothing more to prove. A sketch can be found in the monograph by Geroldinger and Halter-Koch, where it is proved as a byproduct of algebraic ideas developed in the book. This approach, though in essence is the same, involves more elementary ideas and can be grasped by a first-year undergraduate who is attentive enough. The combinatorial approach provides, more than the proof, an intuitive idea in the structure of the group invariants.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 20 / 31

Any better than for p=groups?

Theorem (Delorme, Ordaz and Quiroz (2001))

 $D(C_p \times C_p \times C_{p^n m}) = D^*(C_p \times C_p \times C_{p^n m})$

where p is prime, $n \ge 2$, $gcd(m, p^n) = 1$.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Any better than for p=groups?

Theorem (Delorme, Ordaz and Quiroz (2001))

 $D(C_p \times C_p \times C_{p^n m}) = D^*(C_p \times C_p \times C_{p^n m})$

where p is prime, $n \ge 2$, $gcd(m, p^n) = 1$.

We could get this far with exact values: For $G = C_{p^{e_1}} \times C_{p^{e_2}} \times \cdots \times C_{p^{e_{d-1}}} \times C_{mp^{e_d}}$ with $e_i \leq e_{i+1}$ such that $p^{e_d} \geq 1 + \sum_{i=1}^{d-1} (p^{e_i} - 1),$

$$D_r(G) = rmp^{e_d} + \sum_{i=1}^{d-1} p^{e_i} - d + 1.$$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

$G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_d} \ (n_1, n_2, \dots, n_d \in \mathbb{N})$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

$$G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_d} \quad (n_1, n_2, \dots, n_d \in \mathbb{N})$$

i.e., $G = C_{\prod_{j=1}^{\ell} p_j^{e_1^{(j)}} \times C_{\prod_{j=1}^{\ell} p_j^{e_2^{(j)}}} \times \cdots \times C_{\prod_{j=1}^{\ell} p_j^{e_d^{(j)}}}$ where

$$G \cong C_{n_1} \times C_{n_2} \times \dots \times C_{n_d} \quad (n_1, n_2, \dots, n_d \in \mathbb{N})$$

i.e., $G = C_{\prod_{j=1}^{\ell} p_j^{e_1^{(j)}} \times C_{\prod_{j=1}^{\ell} p_j^{e_2^{(j)}}} \times \dots \times C_{\prod_{j=1}^{\ell} p_j^{e_d^{(j)}}}$ where
• w.l.o.g. $e_i^{(j)} \in \mathbb{Z} \ni 0 \le e_i^{(j)} \le e_{i+1}^{(j)} \forall \ 1 \le j \le \ell$

- $G \cong C_{n_1} \times C_{n_2} \times \dots \times C_{n_d} \quad (n_1, n_2, \dots, n_d \in \mathbb{N})$ i.e., $G = C_{\prod_{j=1}^{\ell} p_j^{e_1^{(j)}} \times C_{\prod_{j=1}^{\ell} p_j^{e_2^{(j)}}} \prod_{j=1}^{\ell} p_j^{e_j^{(j)}} \times \dots \times C_{\prod_{j=1}^{\ell} p_j^{e_d^{(j)}}}$ • w.l.o.g. $e_i^{(j)} \in \mathbb{Z} \ni 0 \le e_i^{(j)} \le e_{i+1}^{(j)} \forall 1 \le j \le \ell$
 - but all $e_i^{(j)}$'s are not zero for each $j \in \{1, \dots, \ell\}$ $(1 \le i \le d)$

- $G \cong C_{n_1} \times C_{n_2} \times \dots \times C_{n_d} \quad (n_1, n_2, \dots, n_d \in \mathbb{N})$ i.e., $G = C_{\prod_{j=1}^{\ell} p_j^{e_1^{(j)}} \times C_{\prod_{j=1}^{\ell} p_j^{e_j^{(j)}} \times \dots \times C} \prod_{j=1}^{\ell} p_j^{e_d^{(j)}}$ where • w.l.o.g. $e_i^{(j)} \in \mathbb{Z} \ni 0 \le e_i^{(j)} \le e_{i+1}^{(j)} \forall \ 1 \le j \le \ell$
 - but all $e_i^{(j)}$'s are not zero for each $j \in \{1, \dots, \ell\}$ $(1 \le i \le d)$
 - p_1, p_2, \ldots, p_ℓ primes $\exists p_j^{e_d^{(j)}} \ge 1 + \sum_{i=1}^{k-1} \left(p_j^{e_i^{(j)}} 1 \right) \ \forall \ j = 1, 2, \ldots, \ell.$

$$\begin{split} G &\cong C_{n_1} \times C_{n_2} \times \dots \times C_{n_d} \ (n_1, n_2, \dots, n_d \in \mathbb{N}) \\ \text{i.e., } G &= C \\ \prod_{j=1}^{\ell} p_j^{e_j^{(j)}} \times C \\ \prod_{j=1}^{\ell} p_j^{e_j^{(j)}} &\cong C \\ \prod_{j=1}^{\ell} p_j^{e_j^{(j)}} &\cong C \\ \text{o w.l.o.g. } e_i^{(j)} &\in \mathbb{Z} \ni 0 \le e_i^{(j)} \le e_{i+1}^{(j)} \ \forall \ 1 \le j \le \ell \\ \text{o but all } e_i^{(j)} \text{'s are not zero for each } j \in \{1, \dots, \ell\} \ (1 \le i \le d) \\ \text{o } p_1, p_2, \dots, p_\ell \text{ primes } \ni p_j^{e_d^{(j)}} \ge 1 + \sum_{i=1}^{k-1} \left(p_j^{e_i^{(j)}} - 1 \right) \ \forall \ j = 1, 2, \dots, \ell. \\ \text{Let } \varphi(p_j) = \sum_{i=1}^{d-1} p_j^{e_i^{(j)}} - d + 1 \text{ for } j = 1, \dots, \ell. \end{split}$$

Then,

$$G \cong C_{n_{1}} \times C_{n_{2}} \times \dots \times C_{n_{d}} (n_{1}, n_{2}, \dots, n_{d} \in \mathbb{N})$$

i.e., $G = C$
$$\prod_{j=1}^{\ell} p_{j}^{e_{1}^{(j)}} \times C$$

$$\prod_{j=1}^{\ell} p_{j}^{e_{2}^{(j)}} \times C = \prod_{j=1}^{\ell} p_{j}^{e_{2}^{(j)}} \times \dots \times C$$

w.l.o.g. $e_{i}^{(j)} \in \mathbb{Z} \ni 0 \le e_{i}^{(j)} \le e_{i+1}^{(j)} \forall 1 \le j \le \ell$
• but all $e_{i}^{(j)}$'s are not zero for each $j \in \{1, \dots, \ell\}$ $(1 \le i \le d)$
• $p_{1}, p_{2}, \dots, p_{\ell}$ primes $\ni p_{j}^{e_{j}^{(j)}} \ge 1 + \sum_{i=1}^{k-1} \left(p_{j}^{e_{i}^{(j)}} - 1\right) \forall j = 1, 2, \dots, \ell.$
Let $\varphi(p_{j}) = \sum_{i=1}^{d-1} p_{j}^{e_{j}^{(j)}} - d + 1$ for $j = 1, \dots, \ell$.

Then, $r \prod_{j=1}^{\ell} p_j^{e_d^{(j)}}$

$$\begin{split} G &\cong C_{n_{1}} \times C_{n_{2}} \times \dots \times C_{n_{d}} \ (n_{1}, n_{2}, \dots, n_{d} \in \mathbb{N}) \\ \text{i.e., } G &= C \prod_{\substack{j=1 \\ j=1}}^{\ell} p_{j}^{e_{j}^{(j)}} \times C \prod_{\substack{j=1 \\ j=1}}^{\ell} p_{j}^{e_{j}^{(j)}} \times \dots \times C \prod_{\substack{j=1 \\ j=1}}^{\ell} p_{j}^{e_{j}^{(j)}} \\ \text{e w.l.o.g. } e_{i}^{(f)} &\in \mathbb{Z} \ni 0 \le e_{i}^{(f)} \le e_{i+1}^{(f)} \ \forall \ 1 \le j \le \ell \\ \text{e but all } e_{i}^{(f)} \text{'s are not zero for each } j \in \{1, \dots, \ell\} \ (1 \le i \le d) \\ \text{e } p_{1}, p_{2}, \dots, p_{\ell} \text{ primes } \ni p_{j}^{e_{j}^{(f)}} \ge 1 + \sum_{i=1}^{k-1} \left(p_{j}^{e_{i}^{(f)}} - 1 \right) \ \forall \ j = 1, 2, \dots, \ell. \\ \text{Let } \varphi(p_{j}) &= \sum_{i=1}^{d-1} p_{j}^{e_{i}^{(f)}} - d + 1 \text{ for } j = 1, \dots, \ell. \\ \text{Then, } r \prod_{j=1}^{\ell} p_{j}^{e_{j}^{(f)}} + \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_{j}^{e_{i}^{(f)}} - 1 \right) \end{split}$$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

$$G \cong C_{n_{1}} \times C_{n_{2}} \times \dots \times C_{n_{d}} (n_{1}, n_{2}, \dots, n_{d} \in \mathbb{N})$$

i.e., $G = C \prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} \times C \prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} \times \dots \times C \prod_{j=1}^{\ell} p_{j}^{e_{d}^{(j)}}$ where
 $\prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} \in \mathbb{Z} \ni 0 \le e_{i}^{(j)} \le e_{i+1}^{(j)} \forall 1 \le j \le \ell$
• but all $e_{i}^{(j)}$'s are not zero for each $j \in \{1, \dots, \ell\}$ $(1 \le i \le d)$
• $p_{1}, p_{2}, \dots, p_{\ell}$ primes $\ni p_{j}^{e_{d}^{(j)}} \ge 1 + \sum_{i=1}^{k-1} \left(p_{j}^{e_{i}^{(j)}} - 1 \right) \forall j = 1, 2, \dots, \ell.$
Let $\varphi(p_{j}) = \sum_{i=1}^{d-1} p_{j}^{e_{i}^{(j)}} - d + 1$ for $j = 1, \dots, \ell.$
Then, $r \prod_{j=1}^{\ell} p_{j}^{e_{d}^{(j)}} + \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_{j}^{e_{i}^{(j)}} - 1 \right) \le D_{r}(G)$

Anamitro Biswas (TRIM, IAI, TCG-CREST)

$$\begin{split} G &\cong C_{n_{1}} \times C_{n_{2}} \times \dots \times C_{n_{d}} \ (n_{1}, n_{2}, \dots, n_{d} \in \mathbb{N}) \\ \text{i.e., } G &= C \prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} \times C \prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} \times \dots \times C \prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} \text{ where } \\ &= \text{ w.l.o.g. } e_{i}^{(j)} \in \mathbb{Z} \ni 0 \leq e_{i}^{(j)} \leq e_{i+1}^{(j)} \forall 1 \leq j \leq \ell \\ &= \text{ but all } e_{i}^{(j)} \text{'s are not zero for each } j \in \{1, \dots, \ell\} \ (1 \leq i \leq d) \\ &= p_{1}, p_{2}, \dots, p_{\ell} \text{ primes } \ni p_{j}^{e_{d}^{(j)}} \geq 1 + \sum_{i=1}^{k-1} \left(p_{j}^{e_{i}^{(j)}} - 1 \right) \ \forall \ j = 1, 2, \dots, \ell. \end{split}$$

Let $\varphi(p_{j}) = \sum_{i=1}^{d-1} p_{j}^{e_{i}^{(j)}} - d + 1 \text{ for } j = 1, \dots, \ell. \end{cases}$
Then, $r \prod_{j=1}^{\ell} p_{j}^{e_{d}^{(j)}} + \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_{j}^{e_{i}^{(j)}} - 1 \right) \leq D_{r}(G) \\ &\leq r \prod_{j=1}^{\ell} p_{j}^{e_{d}^{(j)}} \end{split}$

$$\begin{split} G &\cong C_{n_{1}} \times C_{n_{2}} \times \dots \times C_{n_{d}} \ (n_{1}, n_{2}, \dots, n_{d} \in \mathbb{N}) \\ \text{i.e., } G &= C_{\prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}}} \times C_{\prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}}} \times \dots \times C_{\prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}}} \text{ where } \\ &= \text{ w.l.o.g. } e_{i}^{(j)} \in \mathbb{Z} \ni 0 \leq e_{i}^{(j)} \leq e_{i+1}^{(j)} \forall 1 \leq j \leq \ell \\ &= \text{ but all } e_{i}^{(j)} \text{'s are not zero for each } j \in \{1, \dots, \ell\} \ (1 \leq i \leq d) \\ &= p_{1}, p_{2}, \dots, p_{\ell} \text{ primes } \ni p_{j}^{e_{j}^{(j)}} \geq 1 + \sum_{i=1}^{k-1} \left(p_{j}^{e_{i}^{(j)}} - 1 \right) \ \forall \ j = 1, 2, \dots, \ell. \\ \text{Let } \varphi(p_{j}) &= \sum_{i=1}^{d-1} p_{j}^{e_{i}^{(j)}} - d + 1 \ \text{for } j = 1, \dots, \ell. \\ \text{Then, } r \prod_{j=1}^{\ell} p_{j}^{e_{d}^{(j)}} \ + \ \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_{j}^{e_{j}^{(j)}} - 1 \right) \leq D_{r}(G) \\ &\leq r \prod_{j=1}^{\ell} p_{j}^{e_{d}^{(j)}} + \sum_{m=1}^{\ell-1} \left(\left(\prod_{j=m+1}^{\ell} p_{j}^{e_{d}^{(j)}} \right) \varphi(p_{m}) \right) + \varphi(p_{\ell}). \end{split}$$

э

イロト イポト イヨト イヨト

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

イロト 不得下 イヨト イヨト

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

We observe that

< 日 > < 同 > < 三 > < 三 >

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

We observe that

increasing r

A B + A B +

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

We observe that

- increasing r
- 2 with larger primes p_1, \ldots, p_ℓ

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

We observe that

- increasing r
- 2 with larger primes p_1, \ldots, p_ℓ
- higher powers e_i^j $(j = 1, \ldots, \ell; i = 1, \ldots, d)$

イロト 不得 トイヨト イヨト 二日

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

We observe that

- increasing r
- 2 with larger primes p_1, \ldots, p_ℓ
- higher powers e_i^j $(j = 1, \ldots, \ell; i = 1, \ldots, d)$

 $error \rightarrow 0$

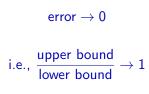
Anamitro Biswas (TRIM, IAI, TCG-CREST)

イロト 不得 トイヨト イヨト 二日

Define, error = $\frac{\text{upper bound} - \text{lower bound}}{\text{lower bound}}$

We observe that

- increasing r
- 2 with larger primes p_1, \ldots, p_ℓ
- higher powers e_i^j $(j = 1, \dots, \ell; i = 1, \dots, d)$



[error has been throughout multiplied by 100 for easy visualization]

Group		r = 1	<i>r</i> = 2	<i>r</i> = 3	<i>r</i> = 4	<i>r</i> = 5
$C_{2.3.5} \oplus C_{2^2.3^2.5^2} \oplus C_{2^3.3^3.5^3}$	UB	41778	68778	95778	122778	149778
	LB	27928	54928	81928	108928	135928
	diff	13850				
	err	49.59181	25.21483	16.90509	12.71482	10.18922
$C_{3.5.7} \oplus C_{3^2.5^2.7^2} \oplus C_{3^3.5^3.7^3}$	UB	1596033	2753658	3911283	5068908	6226533
	LB	1168753	2326378	3484003	4.641628	5799253
	diff	427280				
	err	36.55862	18.36675	12.26405	9.205391	7.367845
$C_{5.7.11} \oplus C_{5^2.7^2.11^2} \oplus C_{5^3.7^3.11^3}$	UB	69921553	126988178	184054803	241121428	298188053
	LB	57215233	114281858	171348483	228415108	285481733
	diff	12706320				
	err	22.207932	11.118405	7.415484	5.562819	4.450835

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Students' talk (Jan 18th 2024) 24 / 31

3

イロト イヨト イヨト イヨト

Group		<i>r</i> = 1	<i>r</i> = 5
	UB	3292613286703417	16039460139018988
$C_{31.47.101} \oplus C_{31^2.47^2.101^2} \oplus C_{31^3.47^3.101^3}$	LB	3186733368408697	15933580220724268
	diff	105879918294720	
	err	3.3225220	0.6645080

$C_{31^2.47^3.101^3} \oplus C_{31^8.47^9.101^5} \oplus C_{31^{17}.47^{21}.101^7}$

r = 1

 $\label{eq:upperbound} Upper \ bound=314378927707039117076594641960472205699918246393796134855347548904541388800 \\ Lower \ bound=31437892770702721569170434813743973043171844658271204789424845095104937984 \\ Difference=11890447077876842522672189603253739181827333079849168416014336 \\ \end{tabular}$

Error= 0.00000000037822023

$\label{eq:response} \begin{array}{l} r=5 \\ \mbox{Upper bound} = 1571894638535147728759342621748217544441028696720224309918829150723580624896 \\ \mbox{Lower bound} = 1571894638535135877591266211694935422470597680646030708671750002626420277248} \end{array}$

Error= 0.0000000000756440

Anamitro Biswas (TRIM, IAI, TCG-CREST)

Result

The error becomes negligible, i.e.,

$$\frac{\text{upper bound}}{\text{lower bound}} \to 1 \text{ if}$$

- either *p_j*'s are large;
- $e_i^{(j)}$'s are higher natural numbers;
- r increases.

イロト 不得 トイヨト イヨト 二日

Result

The error becomes negligible, i.e.,

$$\frac{\text{upper bound}}{\text{lower bound}} \to 1 \text{ if}$$

- either *p_j*'s are large;
- $e_i^{(j)}$'s are higher natural numbers;
- r increases.

difference = upper bound – lower bound = $\sum_{m=1}^{\ell-1} \left(\left(\prod_{j=m+1}^{\ell} p_j^{e_d^{(j)}} \right) \varphi(p_m) \right) + \varphi(p_\ell) - \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_j^{e_i^{(j)}} - 1 \right)$

イロト 不得 トイヨト イヨト 二日

Result

The error becomes negligible, i.e.,

$$\frac{\text{upper bound}}{\text{lower bound}} \to 1 \text{ if}$$

- either p_j's are large;
- $e_i^{(j)}$'s are higher natural numbers;
- r increases.

difference = upper bound – lower bound = $\sum_{m=1}^{\ell-1} \left(\left(\prod_{j=m+1}^{\ell} p_j^{e_d^{(j)}} \right) \varphi(p_m) \right) + \varphi(p_\ell) - \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_j^{e_i^{(j)}} - 1 \right)$

INDEPENDENT OF r

Result

The error becomes negligible, i.e.,

$$rac{\mathsf{upper bound}}{\mathsf{lower bound}}
ightarrow 1$$
 if

- either *p_j*'s are large;
- $e_i^{(j)}$'s are higher natural numbers;
- r increases.

difference = upper bound - lower bound = $\sum_{m=1}^{\ell-1} \left(\left(\prod_{j=m+1}^{\ell} p_j^{e_d^{(j)}} \right) \varphi(p_m) \right) + \varphi(p_\ell) - \sum_{i=1}^{d-1} \left(\prod_{j=1}^{\ell} p_j^{e_i^{(j)}} - 1 \right)$

INDEPENDENT OF r

• For d = 1, these two bounds coincide.

Anamitro Biswas (TRIM, IAI, TCG-CREST)

(r-wise) Davenport constant

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Question

What if $\exp(G) = p$

イロト イポト イヨト イヨト 一日

Question

What if $\exp(G) = p$ (i.e., group of the form C_p^d for $d \ge 3$)

Anamitro Biswas (TRIM, IAI, TCG-CREST)

イロト イポト イヨト イヨト 二日

We are able to conclude about D_r(G) for certain class of G with exp(G) = p^{e_d}, where e_d > 1

Question

What if $\exp(G) = p$ (i.e., group of the form C_p^d for $d \ge 3$)

Conjecture 3

For prime p and $r, d \in \mathbb{N}$, $D_r((C_p)^d) = (r+d-1)p - (d-1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We are able to conclude about D_r(G) for certain class of G with exp(G) = p^{e_d}, where e_d > 1

Question

What if $\exp(G) = p$ (i.e., group of the form C_p^d for $d \ge 3$)

Conjecture 3

For prime *p* and *r*, *d* \in \mathbb{N} , $D_r((C_p)^d) = (r + d - 1)p - (d - 1)$.

• For d = 2, the conjecture is satisfied $\forall r$.

イロト イポト イヨト イヨト 二日

Question

What if $\exp(G) = p$ (i.e., group of the form C_p^d for $d \ge 3$)

Conjecture 3

For prime *p* and *r*, *d* \in \mathbb{N} , $D_r((C_p)^d) = (r + d - 1)p - (d - 1)$.

• For d = 2, the conjecture is satisfied $\forall r$.

If the Conjecture is true, we have

Relating the Conjectures

Let p, q be distinct primes and $G \cong C_p^{d-1} \times C_{pq}$ of rank $d \ge 3$.

Question

What if $\exp(G) = p$ (i.e., group of the form C_p^d for $d \ge 3$)

Conjecture 3

For prime *p* and *r*, *d* \in \mathbb{N} , $D_r((C_p)^d) = (r + d - 1)p - (d - 1)$.

• For d = 2, the conjecture is satisfied $\forall r$.

If the Conjecture is true, we have

Relating the Conjectures

Let p, q be distinct primes and $G \cong C_p^{d-1} \times C_{pq}$ of rank $d \ge 3$. If the previous Conjecture holds for prime p, then $D(G) = D^*(G)$.

 $D^*(G) = (r+d-1)p - (d-1)$ in this case.

Table of Contents

2) The r=wise Davenport Constant

э

References

References: |

- Gautami Bhowmik and Jan-Christoph Schlage-Puchta, Davenport's constant for groups with large exponent, Contemporary Mathematics, Vol 579, (2012).

Gautami Bhowmik and Jan-Christoph Schlage-Puchta, Davenport's constant for groups of the form $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{3d}$. In Additive combinatorics, volume 43 of CRM Proc. Lecture Notes, pages 307-326. Amer. Math. Soc., Providence, RI, (2007).

Charles Delorme, Oscar Ordaz and Domingo Quiroz, *Some remarks on Davenport constant*, Discrete Mathematics, 237 (2001), 119–128.

Y.S. Fan, W.D. Gao, L.L. Wang and Q. H. Zhong, *Two zero-sum invariants on finite abelian groups*, European J. Combinatorics, 34 (2013), 1331–1337.

W Gao, P Zhao, J Zhuang, Zero-sum subsequences of distinct lengths, Int. J. Number Theory, Vol 11 (7), (2015) 2141-2150.

A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Chapman & Hall/CRC (2006).

A. Geroldinger, R. Schneider, On Davenport's constant, J. Combin. Theory Ser. A 61 (1992) 147–152.

- F. Halter-Koch, Arithmetical interpretation of weighted Davenport constants, Arch. Math. 103 (2014), 125-131.
- John E. Olson, A Combinatorial Problem on Finite Abelian Groups, I, Journal of Number Theory, 1 (1969), 8-10.

イロト イポト イヨト イヨト

References: ||

John E. Olson, A Combinatorial Problem on Finite Abelian Groups, II, Journal of Number Theory, 1 (1969), 195-199.

K. Rogers, A Combinatorial problem in Abelian groups, Proc. Cambridge Phil. Soc. 59 (1963), 559-562.

A. Sheikh, The Davenport constant of finite abelian groups, Thesis, University of London, (2017).

э

イロト イポト イヨト イヨト

ThanK nou :)

Anamitro Biswas (TRIM, IAI, TCG-CREST

(r-wise) Davenport constant

Students' talk (Jan 18th 2024) 31/31

2

<ロト <問ト < 国ト < 国ト