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Abstract. We explain the concept of fuzzy sets as introduced by L. A. Zadeh in 1965 [15]. We first discuss
the backdrop of this concept and how the notion of fuzzy sets can be applied, then some set-theoritic definitions
and results shall be extended to fuzzy sets. Further, algebraic operations and the underlying meaning of their
application to fuzzy sets shall be discussed.
Then, we explore the extensions of concepts from general topology to fuzzy sets, and discuss sequences,
continuity and compactness of sets in fuzzy topological spaces.
This was the report I submitted in the third semester of my M.Sc., at National Institute of Technology Silchar,
while I was still working on my M.Sc. thesis under the supervision of Dr. Juthika Mahanta.

1. Introduction to Fuzzy sets

1.1. Backdrop.
‘But,’ you might say, ‘none of this shakes my belief that 2 and 2 are 4.’ You are quite right,
except in marginal cases – and it is only in marginal cases that you are doubtful whether
a certain animal is a dog or a certain length is less than a metre. Two must be two of
something, and the proposition ‘2 and 2 are 4’ is useless unless it can be applied. Two dogs
and two dogs are certainly four dogs, but cases arise in which you are doubtful whether two
of them are dogs. ‘Well, at any rate there are four animals,’ you might say. But there are
microorganisms concerning which it is doubtful whether they are animals or plants. ‘Well,
then living organisms,’ you say. But there are things of which it is doubtful whether they
are living or not. You will be driven into say: ‘Two entities and two entities are four entities.’
When you have told me what you mean by ‘entity’, we will resume the argument.

Simon Singh, Fermat’s Last Theorem, The story of a riddle that confounded the world’s greatest minds for 358 years, Fourth
Estate, London, 1997.
. While we try to deal mathematically with the problems in the world, we come across:

(1) Analytic methods based on calculus of dealing with physical problems are applicable only to problems
involving a handful of variables related to one another in a predictable way. According to Warren
Waver [1948], ‘problems of organized simplicity’.

(2) Statistical methods require a large number of variables with a high degree of randomness. According
to Weaver, problems of ‘disorganized complexity.’

(3) ‘Organized complexity’ or Non-linear systems with large number of components and rich interactions
among the components, which are usually non-deterministic, but not as a result of randomness that
could yield meaningful statistical averages

1
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Unbelievable accleration in evolution of technology during World War II, including Alan Turing’s ground-
breaking experiments with his idea of ‘the universal computer’, made scientists believe for a span of time,
that the level of complexity we can handle is basically a matter of the level of computational power at our
disposal.
. But, as Dr. Paul Erdös is seen to comment in the film N is a Number dir. George Paul Ciscery, ‘You
can say, how do we not know? We have these powerful computers! But, they are not good enough.’ Or as
Hans Bremermann proposed in 1962, ‘No data processing system, whether artifical or living, can process
more than 2 × 1047 bits per second per gram of its mass.’ That leaves us with unsolved calculations if such
impossibly fast computers were being run since the formation of the Earth.
. Traditionally, uncertainty has been tackled by probabilty theory. But in the 1960s, other approaches to
this end began to be explored, among which L. A. Zadeh’s paper is certainly worth mentioning. Some ideas
presented in that paper were suggested in 1937 by American philosopher Max Black. In that paper, Zadeh
broke away from Aristotelian two-valued logic and introduced a “fuzzy" set, where membership is not a
matter of affirmation or denial, but rather a matter of degree.

Let us consider an ordinary cup, which is clearly a cup and not a plate. But what about a tablet? In some
way it is a computer and in some other way it can simply work as a mobile phone. But then it is not as good
as a laptop for my work, and it is too clumsy to carry for a phone. Therefore, absolute “belonging" to either
set is not applicable here. This brings us to a new realm of the basic scientific instinct of classification.

Definition 1.1.1. Let Ω be a space of points with a generic element that we denote by x.
A fuzzy set (class) A ⊆ Ω is characterized by a membership (characteristic) function µA : Ω → [0, 1] with
the value of µA(x) denoting the grade of membership of x in A.
(1) A = {(x, µA(x)) | x ∈ Ω}

. In our previous non-mathematical example, the tablet might have a value of membership function with
respect to set of computers as 0.4, and that with respect to mobile phones as 0.65. An ipad pro might be
more versatile like a computer, e.g., µset of computers(ipad pro) might have value 0.6. But clearly for our cup,
membership function has value 1 or 0, accordingly as the set is that of cups or not. This is called ordinary
or crisp set whose membership function takes only 2 values.

What about probability?
• Traditionally, uncertainty has been tackled by probability theory.
• Both fuzziness and probability give values in the continuum [0, 1].
• But understanding what the two systems are trying to model, we see that they are providing us with

two entirely different aspects of information.
An example might be appropriate here. Let P be the set of all potable liquids.

µP(K) = 0.91

Figure 1. Bottle K

P (M ∈ P) = 0.91

Figure 2. Bottle M

Which one will you choose to drink from? The answer, obviously, is K, if one wants to avoid the risk of
drinking something like hydrochloric acid, probability of which being in M is 9%. But K, which contains
something more or less like drinking water, can be filled with at most swamp water or coke.

1.2. Set terminology.
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1.2.1. Set Operations.

Definition 1.2.1. (1) A is an empty fuzzy set in Ω iff µA(x) = 0 ∀ x ∈ Ω.
(2) Two fuzzy sets A and B are equal, i.e., A = B iff µA(x) = µB(x) ∀ x ∈ Ω.
(3) Complement of a fuzzy set A is denoted by A′ and is defined by

µA′(x) = 1 − µA(x) ∀ x ∈ Ω
or, µA′ = 1 − µA.

(4) Containment. A fuzzy set A is contained in a fuzzy set B or A is a subset of B or A is smaller
than or equal to B iff

µA ≤ µB.

Definition 1.2.2. Let A and B be two fuzzy sets with membership functions µA(x) anf µB(x) respectively.
Their union is a fuzzy set C = A ∪ B whose membership function µC is given by

µC(x) = max {µA(x), µB(x)} ∀ x ∈ Ω,(2)
or, µC = µA ∨ µB.

Associative property.

µA∪(B∪C)(x) = max {µA(x), max {µB(x), µC(x)}} ∀ x ∈ Ω
= max {max {µA(x), µB(x)} , µC(x)} ∀ x ∈ Ω
= µ(A∪B)∪C(x) ∀ x ∈ Ω,

i.e., A ∪ (B ∪ C) = (A ∪ B) ∪ C.

Definition 1.2.3 (Alternative definition). The union of fuzzy sets A and B is the smallest fuzzy set con-
taining both A and B.

Two definitions are equivalent. From (1), since

µC(x) = max {µA(x), µB(x)} ≥ µA(x) ∀ x ∈ Ω

and

µC(x) = max {µA(x), µB(x)} ≥ µB(x) ∀ x ∈ Ω,

A, B ⊆ C.

This is true the other way as well. Furthermore, if D be another fuzzy set ∋ A, B ⊆ D then µD ≥ µA, µB,
hence

µD ≥ max {µA, µB} = µC ⇐⇒ C ⊆ D.

Definition 1.2.4. Let A and B be fuzzy sets with respective membership functions µA(x) and µB(x) respec-
tively. Then their intersection C = A ∩ B has membership function

µC = min {µA, µB} or, µC = µA ∧ µB.

Alternatively, the intersection A ∩ B is the largest fuzzy set which is contained in both A and B.

Definition 1.2.5. Two fuzzy sets A and B are disjoint if A ∩ B is empty.

Union and intersection graphically:
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Figure 3. ▲ Union and intersection of fuzzy sets in R1

In general, for a family of fuzzy sets A = {Ai | i ∈ I}, the union C = ∪i∈IAi and the intersection
D = ∩i∈IAi are defined by

µC(x) = sup
i∈I

{µAi(x)} , x ∈ X;

µC(x) = inf
i∈I

{µAi(x)} , x ∈ X.

We know that, ordinary set C = φ (A1, A2, . . . , An) (where φ is a function made of connectives of the
form ∩ or ∪) can be represented as a network of switches αi corresponding to Ai where

(1) Ai ∩ Aj represents series combination of αi and αj ,
(2) Ai ∪ Aj represents parallel combination of αi and αj .

For fuzzy sets, let µi(x); i = 1, . . . , n denote the membership function of Ai at x. We associate with µi(x) a
sieve Si(x) whose mesh is of size µi(x). Then

(1) Ai ∩ Aj or µi(x) ∧ µj(x) represents series combination of Si(x) and Sj(x),
(2) Ai ∪ Aj or µi(x) ∨ µj(x) represents parallel combination of Si(x) and Sj(x).
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Figure 4. A network of sieves simultating ((µ1(x) ∨ µ2(x)) ∧ µ3(x)) ∨ (µ4(x) ∧ µ5(x))

1.2.2. Laws of set theory.
. In one way, we can say that a point x “belongs” to a fuzzy set A when µA(x) > 0. Less trivially, we can
introduce 2 levels 0 < β < α < 1 such that

(1) x ∈ A if µA(x) ≥ α,
(2) x /∈ A if µA(x) ≤ β,
(3) x has indeterminate status relative to A if β < µA(x) < α.

This leads to a three-valued logic as in [8] with 3 truth values:

T (µA(x) ≥ α) , F (µA(x) ≤ β) , U (β < µA(x) < α) .

.

Theorem 1.2.6 (De Morgan’s laws). If A and B are fuzzy sets, with notation used previously,

(A ∪ B)′ = A′ ∩ B′,(3)
(A ∩ B)′ = A′ ∪ B′.(4)

These are equivalent to the statements:

1 − max {µA, µB} = min {1 − µA, 1 − µB} ,

1 − min {µA, µB} = max {1 − µA, 1 − µB} .

Similarly, we can say

max {µC , min {µA, µB}} = min {max {µC , µA} , max {µC , µB}}

and hence come up with

Theorem 1.2.7 (Distributive laws).

C ∩ (A ∪ B) = (C ∩ A) ∪ (C ∩ B) ,(5)
C ∪ (A ∩ B) = (C ∪ A) ∩ (C ∪ B) .(6)

Essentially, fuzzy sets in Ω constitute a distributive lattice with a 0 and 1. [1]
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Observation 1.2.8. [13] For crisp set A,
Law of Contradiction: A ∩ A′ = ϕ
Law of Excluded Middle: A ∪ A′ = Ω.
But for a non-crisp fuzzy set Ã = (A, µA),

µA∩A′ = min {µA, 1 − µa} ≠ 0,

µA∪A′ = max {µA, 1 − µa} ≠ 1.

∴ these laws do not necessarily hold for fuzzy sets.

1.3. Algebraic operations.

Definition 1.3.1 (Algebraic product). The algebraic product of A and B is denoted by AB and is defined
in terms of membership functions as
(7) µAB = µAµB.

Since 0 ≤ µA, µB ≤ 1 =⇒ µA∩B = min {µA, µB} ≥ µAµB, (“ = ” iff µA, µB ∈ {0, 1}) we can say,

Result 1.3.2.
(8) AB ⊆ A ∩ B.

The dual of AB is the sum A ⊕ B = (A′B′)′ = A + B − AB. For ordinary sets, ∩ ≈ algebraic product,
and ∪ ≈ ⊕.

Figure 5. Product of two fuzzy sets A and B in R1

Definition 1.3.3 (Algebraic sum). The algebraic sum A + B of A and B is defined by
(9) µA+B = µA + µB

provided µA(x) + µB(x) ≤ 1 ∀ x.
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Since this definition does not make much sense if µA(x) + µB(x) ≥ 1, we can otherwise define algebraic
sum as in [16], that

Definition 1.3.4. The algebraic (probabilistic) sum C̃ = Ã ⊕ B̃ = {(x, µA⊕B(x)) | x ∈ Ω} is defined by
membership function

(10) µA⊕B = µA + µB − µAµB ≤ 1.

Or else,

Definition 1.3.5 (Bounded sum). The bounded sum of A and B is defined as

C̃ = Ã + B̃ = {(x, µA+B(x)) | x ∈ Ω}

where

(11) µA+B = min {1, µA + µB} .

Figure 6. Comparison of sums of two fuzzy sets A and B in R1

Definition 1.3.6 (Absolute difference). The absolute difference |A − B| of A and B is defined by

(12) µ|A−B| = |µA − µB|.

For ordinary sets,

x /∈ |A − B| ⇐⇒ µ|A−B|(x) = 0
⇐⇒ x ∈ A, B or x /∈ A, B

⇐⇒ x /∈ (A ∪ B) \ (A ∩ B)
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and
x ∈ |A − B| ⇐⇒ µ|A−B|(x) = 1

⇐⇒ x ∈ A, x /∈ B or x /∈ A, x ∈ B

⇐⇒ x ∈ (A ∪ B) \ (A ∩ B) .

Figure 7. Absolute difference of two fuzzy sets A and B in R1

Definition 1.3.7 (Convex combination). The convex combination of arbitrary fuzzy sets A, B, Λ is denoted
by (A, B; Λ) and is defined by the relation:
(13) (A, B; Λ) = ΛA + Λ′B.

In terms of membership functions,
(14) µ(A,B;Λ)(x) = µΛ(x)µA(x) + [1 − µΛ(x)]µB(x); x ∈ Ω.

Result 1.3.8. For fuzzy sets A, B,
(15) A ∩ B ⊂ (A, B; Λ) ⊂ A ∪ B ∀Λ

Proof. If λ ∈ [0, 1],
λµA(x) + (1 − λ)µB(x) ≥ min {µA(x), µB(x)}
λµA(x) + (1 − λ)µB(x) ≤ max {µA(x), µB(x)} , x ∈ Ω.

Now, we have another interesting observation:
Proposition 1.3.9. Given any fuzzy set C ∋ A ∩ B ⊆ C ⊆ A ∪ B, ∃ Λ ∋ C = (A, B; Λ).

Indeed, the membership function of Λ can be computed as:

(16) µΛ(x) = µC(x) − µB(x)
µA(x) − µB(x) , x ∈ Ω.
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1.4. Fuzzy sets induced by mappings.

Definition 1.4.1 (Relations). A relation is defined as a set of ordered pairs. [4]

Definition 1.4.2. A fuzzy relation in Ω is a fuzzy set in the product space Ω × Ω. An n-ary fuzzy relation
in Ω as a fuzzy set A in the product space Ω × Ω × · · · × Ω (n times).

Definition 1.4.3 (Composition). Composition of two fuzzy relations A and B is denoted by B ◦ A, which
is a fuzzy relation in Ω defined in terms of membership functions as

(17) µB◦A(x, y) = sup
v

min {µA(x, v), µB(v, y)} , v ∈ Ω.

Note. A ◦ (B ◦ C) = (A ◦ B) ◦ C.
Let T be a mapping from space X to space Y , and let us consider fuzzy set B ⊆ Y and A = T −1(B) ⊆ X.

What will be the membership function of a fuzzy set B ∈ Y induced by mapping T from a fuzzy set A ∈ X?

Ambiguity shall arise when T is not an injective map, i.e., when we shall have x1, x2 ∈ X ∋ T (x1) =
T (x2) = y ∈ Y . Then what will be the value of µB(y)? µA (x1) or µA (x2)?

The membership function for B is defined by:

(18) µB(y) =

 max
x∈T −1(y)

µA(x), y ∈ Y if T −1 {y} ≠ ϕ,

0 if T −1 {y} = ϕ.

Theorem 1.4.4 (Properties of fuzzy sets induced by mappings). [2, Theorem 4.1] Let f : X → Y and
g : Y → Z be two mappings where X, Y and Z are spaces. Let g ◦ f be the composition of f and g. Let
A1 ⊆ X, A2 ⊆ X, B1 ⊆ Y, B2 ⊆ Y, C ⊆ Z be arbitrary fuzzy sets. Then,

(1) f−1 [B′
1] =

(
f−1 [B1]

)′.
(2) f [A′

1] ⊇ (f [A1])′.
(3) B1 ⊆ B2 =⇒ f−1 [B1] ⊆ f−1 [B2].
(4) A1 ⊆ A2 =⇒ f [A1] ⊆ f [A2].
(5) B1 ⊇ f

[
f−1 [B1]

]
.

(6) A1 ⊆ f−1 [f [A1]].
(7) (g ◦ f)−1 [C] = f−1 [

g−1 [C]
]
.
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1.5. Partition, Convexity, Shadow and some results. We assume from now on that Ω is a real Eu-
clidean space En.

Definition 1.5.1 (Partition of S for grade α). The crisp set containing only elements belonging with a
grade of membership of at least α to a fuzzy set in question, i.e.,
(19) Γα(S) = {x ∈ Ω | µS(x) ≥ α}
This is also called the weak α-cut of S. The strong α-cut of S is defined as
(20) σα(S) = {x ∈ Ω | µS(x) > α} .

σ0(S) is called the support of A. It is the crisp set of all elements of Ω which have non-zero membership
functions with respect to A.

Definition 1.5.2 (Convexity). (1) A fuzzy set S in a linear psace Ω is said to be convex if the crisp
set Γα are convex ∀ α ∈ [0, 1].

Basically here, we define S to be convex iff for any x, y ∈ S, all elements that can be expressed as
a convex combination of x and y have at least as high a grade of membership to S as either x or y.

(2) A fuzzy set S is said to be convex if ∀ λ ∈ (0, 1)
(21) µS (λx + (1 − λ)y) ≥ min {µS(x), µS(y)} .

Result 1.5.3 (Equivalence of the two definitions).
Definition (1) =⇒ Definition (2). Let us consider

(22) α = min {µ(x), µ(y)}
where µ refers to µS . Now since Γα is convex, we have that for any λ ∈ [0, 1],

λx + (1 − λ)y ∈ Γα

and for all γ ∈ Γα we have µ(γ) ≥ α = min {µ(x), µ(y)}. □

Definition (2) =⇒ Definition (1). For any α we have x, y ∈ Γα =⇒ µ (λx + (1 − λ)y) ≥
min {µ(x), µ(y)} = α =⇒ λx + (1 − λ)y ∈ Γα, which implies convexity of the crisp sets Γα. □

Theorem 1.5.4. If A and B are convex fuzzy sets then A ∩ B is convex.

Proof. Let C = A ∩ B. Then,
µC (λx + (1 − λ)y) = min {µA (λx + (1 − λ)y) , µB (λx + (1 − λ)y)}

≥ min {min {µA(x), µA(y)} , min {µB(x), µB(y)}}
= min {min {µA(x), µB(x)} , min {µA(y), µB(y)}}
= min {µC(x), µC(y)} . □

Definition 1.5.5 (Strict convexity). A fuzzy set S is said to be strictly convex if for any α ∈ (0, 1],
1
2x + 1

2y ∈ Γint
α ∀ x, y ∈ Γα.

Definition 1.5.6 (Strong convexity). A fuzzy set S is said to be strongly convex if for any λ ∈ (0, 1) and
for any distinct x and y,

µS (λx + (1 − λ)y) > min {µS(x), µS(y)} .

. Note. Strict convexity does not imply strong convexity. The crisp set containing the unit disc in R2

provides an example of a strictly but not strongly convex fuzzy set.
Also, strong convexity does not imply strict convexity. But it does in R1. x, y ∈ Γα =⇒ (x, y) ⊆ Γα by
strong convexity and x, y form the boundary of that interval.

Theorem 1.5.7. If A and B are strongly convex fuzzy sets in Rn, then C = A ∩ B is strongly convex as
well.

The proof of this theorem is quite the same as that of the preservation of weaker convexity in case of
intersection. Only the inequalities involved will be strict in this case.
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Theorem 1.5.8 (a theorem which is less trivial:). If A and B are strictly convex fuzzy sets in Rn, then
C = A ∩ B is strictly convex as well.

Proof. Let x and y be arbitrary points belonging to partition for grade α for both A and B, and z be their
midpoint 1

2x + 1
2y. Then by strict convexity of both sets for every point u near z, µA(u) ≥ α, µB(u) ≥ α

and thus µC(u) = min {µA(u), µB(u)} ≥ α. Thus u ∈ Γ(C)
α , the partition by grade α of C, and since this is

true ∀ u near z, z ∈
(
Γ(C)

α

)int
. □

Result 1.5.9. The characteristic function of a strongly convex set has no zeroes.
Proof. Let µ(z) = µ (λx + (1 − λ)y) = 0 > µ(x), µ(y), a contradiction! □

Result 1.5.10. The characteristic function of a strongly convex fuzzy set attains its supremum at no more
than one point.

Proof. We simply suppose that it attains its supremum at two points, join them with a line and see that
strong convexity is violated for any point on that line. □

Definition 1.5.11 (Boundedness). A fuzzy set A is bounded iff the sets Γα = {x | µA(x) ≥ α} are bounded
in norm ∀ α > 0, i.e., ∀α > 0 ∃ some finite R(α) ∋ ∥x∥ ≤ R(α) ∀ x ∈ Γα.

Definition 1.5.12 (Maximal grade). For a fuzzy set S, the maximal grade M is defined by
(23) M = sup

x∈Ω
µS(x).

Lemma 1.5.13. Let A be a bounded fuzzy set and its maximal grade be M . Then ∃ x0 ∈ Ω at which M is
essentially attained.
Definition 1.5.14 (Essential attainment). c ∈ Ω is said to be essentially attained at x0 at c, if for every
ε > 0, every neighbourhood of x0 contains points in the set

Q(ε) = {x | µA(x) ≥ c − ε} ,

i.e., every neighbourhood of x0 contains some xi ∋ µS (xi) ≥ c − ε.
Back to the lemma, however, M need not be “essentially attained" if it is literally attained.

Proof of the lemma. [The case of a crisp set containing a single point demonstrates that M need not be
essentially attained in this case.] Now we suppose that ∄ any such point and consider the sequence of crisp
sets

{
Γα(n)

}
where α(n) = M − M

n+1 . By definition of M , for every finite n, ∃ a point with membership
grade > α(n). Therefore, Γα(n) ̸= ϕ ∀ n ∈ N. Since A is bounded, Γα(1) is bounded, i.e., Γα(1) is compact.
Now, α(n) ↑ since − M

n+1 > −M
n and µA(x) ≥ M − M

n+1 =⇒ µA(x) ≥ M − M
n =⇒ Γα(n) ⊆ Γα(n−1).

Therefore, Γα(n) ⊆ Γα(n−1) ⊆ Γα(n−1) ⊆ Γα(1).
We consider the sequence {xn} where xn ∈ Γα(n) is arbitrarily chosen. By Bolzano-Weierstrass’ theorem,
some subsequence of {xn} converges to some point x0 ∈ Γα(1).
Since no point xn satisfies µS(xn) = M , for fixed xk we can take N large enough that xn>N ̸= xk and thus
every neighbourhood of x0 must contain an infinite number of unique points in (xn).
Since we can also take N high enough that every xn>N has a membership grade within ε distance of M , M
is essentially attained at x0. □

Definition 1.5.15 (Core of a fuzzy set). If S is a fuzzy set with maximum grade M , its core denoted by
C(S) is the crisp set consisting of all points at which M is essentially attained.
Theorem 1.5.16. The core of a convex fuzzy set is also convex.

Proof. M = supx∈Ω µS(x),
C(S) = {x0 ∈ S | ∀ ε > 0 ∀ δ > 0 ∃ xi ∈ Bδ (x0) ∋ µS (xi) ≥ M − ε}.
x, y ∈ S =⇒ µS (λx + (1 − λ)y) ≥ min {µS(x), µS(y)}.
x0, y0 ∈ C(S) ⊆ S =⇒ µS(λx0 + (1 − λ)y0︸ ︷︷ ︸

=z0

) ≥ min {µS(x0), µS(y0)}

Now, ∀ ε > 0, ∀ δ > 0 ∃ xi ∈ Bδ(x0) ∋ µS (xi) ≥ M − ε, ∀ ε > 0, ∀ δ > 0 ∃ yi ∈ Bδ(y0) ∋ µS (yi) ≥ M − ε.

∴ ∀ ε > 0, ∀ δ > 0 ∃ δ1, δ2 ∋ δ = φ(δ1, δ2)

∃ xi ∈ Bδ1(x0)
yi ∈ Bδ2(y0)

}
zi ∈ Bδ (λx0 + (1 − λ)y0)

∋ µS (zi) ≥ min {µS (xi) , µS (yi)} ≥ M − ε.
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What is a hyperplane? Geometrically, a hyperplane is a subspace whose dimension is one less than that of
its ambient space.

Lemma 1.5.17. If A is a bounded set, then for each ε > 0 ∃ a hyperplane H such that µA(x) ≤ ε ∀ x on
the side of H which does not contain the origin.

Proof. We consider the set Γε = {x | µA(x) ≥ ε}. By hypothesis, this set is contained in a sphere S of
radius R(ε). Let H be any hyperplane supporting S. Then, all points on the side of H which does not
contain the origin lie outside or on S, and hence for all such points µA(x) ≤ ε. □

Definition 1.5.18 (Shadow of a fuzzy set). Firstly, Ω = En. Let A ⊆ En, whose membership function is
given by
(24) µA(x) = µA (x1, x2, . . . , xn)
We shall as of now define shadow or projection of a fuzzy set only on a coordinate hyperplane,i.e., if the
hyperplane H is normal to the i-th basis vector, i.e., a hyperplane of the form H = {x | xi = 0} ; i ∈
{1, . . . , n}.
Shadow of A on H is defined as a fuzzy set SH(A) ⊆ En−1 with membership function
(25) µSH(A)(x) = µSH(A) (x1, x2, . . . , xi−1, xi+1, . . . , xn) = sup

xi∈E1
µA (x1, x2, . . . , xn) .

We note as well that this definition is consistent with definition of mapping in (18).

2. Fuzzy Topology

[In this section I have included proofs of results only if they are alternative proofs to the ones in standard
texts, or new proofs.]

2.1. Open sets.

Notation 2.1.1. We shall denote by ϕ the empty fuzzy set, i.e., the set where the membership fucntion is
identically equal to 0 for all x ∈ X. For the universal set X, we have, µX(x) = 1 ∀ x ∈ X.

Definition 2.1.2 (Fuzzy topology). Let τ be a family of fuzzy sets in X such that
(1) ϕ, X ∈ τ ;
(2) A, B ∈ τ =⇒ A ∩ B ∈ τ ;
(3) Ai ∈ τ ∀ i ∈ I =⇒ ∪i∈IAi ∈ τ .

Then τ is called a fuzzy topology for X and (X, τ) is called a fuzzy topological space or fts for short.

This essentially, as in our known definition for crisp sets, means that τ is a family of fuzzy sets in X such
that arbitrary unions and finite intersections of sets in τ belong to τ . Condition (1) gets redundant.

Definition 2.1.3 (Open and closed sets). A set A is τ -open if A ∈ τ , while it is τ -closed if and only if AC

is τ -open.

Notation 2.1.4. (1) Indiscrete fuzzy topology, I = {ϕ, X};
(2) Discrete fuzzy topology, D ⊃ {{x} | x ∈ X}.

Definition 2.1.5. A topology υ on X is said to be coarser than a topology τ on X, or in other words, τ
is said to be finer than υ, if υ ⊂ τ . Two topologies are equal if and only if both are finer, or coarser, than
each other.

. As of yet, we have been accustomed to consider neighbourhoods of points, i.e., a set A ⊆ X is said to be
a neighbourhood of a point x ∈ X if ∃ Uopen ⊆ X ∋ x ∈ Uopen ⊆ A. But when we come to think of fuzzy
sets, since it is not a black-and-white fact that whether a point belongs to a set or not, it makes more sense
to think of neighbourhoods of a fuzzy set itself (which contains points to the extent of the values of their
membership functions).

Definition 2.1.6 (Neighbourhood of a fuzzy set). A fuzzy set U ⊆ X in an fts (X, τ) is said to be a
neighbourhood (nbhd for short) of a fuzzy set A ⊆ X if and only if there exists a τ -open fuzzy set O such
that A ⊆ O ⊆ U .
A neighbourhood system of a fuzzy set is the family of all its neighbourhoods.
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Theorem 2.1.7. [2, Theorem 2.1] A fuzzy set A is open if and only if A is a neighbourhood of each fuzzy
set B ⊆ A.

Theorem 2.1.8. [2, Theorem 2.2] If υ is the nbhd system of a fuzzy set, then
(1) A1, A2, . . . , An ∈ υ =⇒ ∩n

i=1Ai ∈ υ (∞ > n ∈ N);
(2) If a fuzzy set A be such that A ⊃ B where B ∈ υ, then A ∈ υ.

Definition 2.1.9. Let A and B be fuzzy sets in an fts (X, τ) such that A ⊃ B. Then, B is an interior fuzzy
set of A if and only if A is a nbhd of B.
The interior of A, A◦ = {B ⊆ X | B is an interior fuzzy set of A}.

Theorem 2.1.10. [2, Theorem 2.3] For a fuzzy set A, A◦ is the largest open fuzzy set contained in A.
Moreover, A is open if and only if A = A◦.

2.2. Sequences of Fuzzy Sets.

Definition 2.2.1. (1) A sequence {An | n ∈ N} is said to be eventually contained in a fuzzy set A if
and only if ∃ m ∈ N ∋

n ≥ m =⇒ An ⊆ A.

(2) A sequence {An | n ∈ N} in an fts (X, τ) is said to converge to a fuzzy set A ⊆ X if and only if
the sequence is eventually contained in every nbhd of A. [Note here that the sequence need not be
eventually contained in A.]

Definition 2.2.2. (1) A sequence {An | n ∈ N} is said to be frequently contained in A if and only if
∀ m ∈ N ∃ n ∈ N ∋ n ≥ m and An ⊆ A.

(2) A fuzzy set A in a fts (X, τ) is said to be a cluster fuzzy set of a sequence of fuzzy sets if and only
if that sequence is frequently contained in every nbhd of A.

Definition 2.2.3 (Subsequence). A sequence {Bi | i ∈ N} is a subsequence of a sequence {An | n ∈ N} if
and only if ∃ a mapping N : Z ∪ {0} → Z ∪ {0} ∋

(1) Bi = AN(i);
(2) ∀ m ∈ N, ∃ n ∈ N ∋

i ≥ n =⇒ N(i) ≥ m.

Theorem 2.2.4. [2, Theorem 3.1] If the nbhd system of each fuzzy set in an fts (X, τ) is countable, then
(a) Suppose we have a sequence {An | n ∈ N} → B ⊆ A. Then, {An | n ∈ N} is eventually contained

in A if and only if A is open.
(b) If A is a cluster fuzzy set of a sequence {An | n ∈ N} of fuzzy sets, then ∃ a subsequence of

{An | n ∈ N} that converges to A.

Proof of part (b). Choose m1 ∈ N. ∃ n1 ≥ m1 ∋ An1 ⊆ A. Choose m2 = n1 + 1. For 2 ≤ k ∈ N,
∃ nk ≥ mk ∋ Ank

⊆ A. Let

N(i) =
{

i, if 1 ≤ i ≤ n1;
i − n1 + 1, if i > n1.

Then, {A1, A2, . . . , An1−2, An1−1, An1 , An2 , An3 , . . .} → A. □

2.3. Continuity.

Definition 2.3.1 (F-continuity). A function f from an fts (X, τ) to an fts (Y, υ) is said to be F-continuous
if and only if f−1 [Gυ-open] is τ -open ∀ G ∈ υ.

Result 2.3.2. [2, p.187] Composition of two F-continuous functions is again F-continuous.

Theorem 2.3.3. [2, Theorem 4.2] Let X and Y be fts’s, and f : X → Y be a function.
(a) f is F-continuous.
(b) The f -inverse of every closed fuzzy set in Y is closed.
(c) For each fuzzy set A ⊆ X, the inverse of every nbhd of f [A] is a nbhd of A.
(d) For each fuzzy set A ⊆ X and each nbhd V of f [A], there is a nbhd W of A such that f [W ] ⊆ V .
(e) If {An | n ∈ N} be a sequence in X which converges to a fuzzy set A in X, {f [An] | n ∈ N} → f [A].

Then (a) is equivalent to (b), (c) is equivalent to (d), (a) =⇒ (c) and (c) =⇒ (e).
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Definition 2.3.4. A fuzzy homeomorphism is an F-continuous injective map from an fts X onto an fts Y ,
such that the inverse of the map is F-continous as well. In that case X and Y are said to be F-homeomorphic
and each is a fuzzy homeomorph of the other.

Two fts’s are topologically F-equivalent if and only if they are F-homeomorphic. [Is it the same that each
is coarser than the other?]

2.4. Induced fuzzy topology. Let (X, τ) be a crisp topological space. Let A be a fuzzy set in X.

Definition 2.4.1 (Directed set). A directed set J is a set endowed with partial order ⪯ such for each pair
α, β ∈ J , ∃ γ ∈ J ∋ α ⪯ γ, β ⪯ γ.

Definition 2.4.2 (Net). A net in X is a function f : J → X where J is a directed set. For α ∈ J , f(α)
is denoted by xα. We denote the net itself by (xα)α∈J .

Definition 2.4.3. A net (xα)α∈J is said to converge at x ∈ X (written xα → x) if for each neighbourhood
U of x, ∃ α ∈ J ∋

α ⪯ β =⇒ xβ ∈ U.

Definition 2.4.4 (Closed fuzzy set). A is closed if whenever there exists a net (xα)α∈J → x ∈ X, then
µA(x) ≥ lim supα∈J µA (xα), i.e., x is at least as much in A as the xα ultimately are.

But this is precisely the condition that the mapping µA : X → R is upper semicontinuous, i.e., 1 − µA,
the membership function for “open” A′ is lower semicontinuous. Thus,

Definition 2.4.5 (Induced Fuzzy Topology). An induced fuzzy topology on (X, τ) is the collection of all
lower semicontinuous fuzzy sets in X. It is denoted by F (τ).

Here, we are referring to the membership function as the fuzzy set. We can alternatively say, ‘The
collection of all fuzzy sets in X with lower semicontinuous membership functions’, which is the same thing.

Proposition 2.4.6. [14, Proposition 3.2] F (τ) thus defined will be a fuzzy topology for X.

Thus, (X, F (τ)) is an fts. Since f : X → R is lower semicontinuous (respectively, upper semicontinuous)
if and only if ∀ r ∈ R, {x ∈ X | f(x) ≤ r} is closed (respectively, {x ∈ X | f(x) ≥ r} is closed),

Proposition 2.4.7. [14, Proposition 3.3] A fuzzy set A in X is open if and only if σα(A) is open ∀ α > 0.
A is closed if and only if Γα(A) is closed ∀ α > 0.

Notation 2.4.8. If S ⊆ X is a crisp set, we can think of its characteristic function

χS(x) =
{

1 if x ∈ S;
0 if x /∈ S

∀ x ∈ X

to represent a fuzzy set, which we shall denote by χS.

Result 2.4.9. [14, p. 144] S ∈ τ =⇒ χS ∈ F (τ).

Proposition 2.4.10 (F-continuity in induced fuzzy sets). [14, Proposition 3.4] If (X, τ), (Y, υ) be topological
spaces, then a mapping T : (X, F (τ)) → (Y, F (υ)) is F-continuous if and only of T : (X, τ) → (Y, υ) is
continuous.

2.5. Approaches to define compactness. In point set topology, we had defined compactness as:

Definition 2.5.1 (Compactness as in point set topology). [12] A space X is said to be compact if every
open covering A of X contains a finite subcollection that also covers X.

A similar approach for fuzzy sets had been suggested in [2].

Definition 2.5.2 (Open cover for fuzzy spaces). A family G of open fuzzy sets is an open cover for a fuzzy
set B if and only if B ⊆ ∪G∈GG. A subcover is a subfamily of G that is also a cover.

Definition 2.5.3 (Fuzzy compactness, Chang). An fts (X, τ) is compact if and only if every open cover of
X has a finite subcover.

But, we can see that this definition is of no use when we deal with induced fuzzy topologies, because

Observation 2.5.4. According to the criterion in Definition 2.5.3, no induced fts (not even if induced by
a compact topological space) is compact.
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Proof. Let (Y, τ) be any fts. Even if it contains a sequence {An | n ∈ N} of open constant fuzzy sets such
that µAn is strictly increasing and µAn → 1 as n → ∞, then (Y, τ) cannot be compact since {An | n ∈ N}
is an open cover for χY having no finite subcover. □

Definition 2.5.5 (Alternative definition). [14, Definition 3.5] A fuzzy set A in X is compact if Γα(A) is
compact ∀ α > 0.

Definition 2.5.6 (FIP). A family A of fuzzy sets has the finite intersection property if and only if the
intersection of the members of each finite subfamily of A is nonempty.

2.5.1. Results on compactness that follow from Definition 2.5.3.

Theorem 2.5.7. [2, Theorem 5.1] An fts is compact if and only if each family of closed fuzzy sets in it
satisfying finite intersection property has a non-empty intersection.

Theorem 2.5.8. [2, Theorem 5.2] Let X be a compact fts, and f : X → Y be an F-continuous function.
Then Y is compact.

2.5.2. Results on compactness that follow from Definition 2.5.5.

Proposition 2.5.9. [14, Proposition 3.6] A fuzzy set A in (R, U) is compact if and only if it is closed and
bounded.

Proposition 2.5.10 (An equivalent of Theorem 2.5.8 for Hausdorff codomain). [14, Proposition 3.7] Let T
be a continuous mapping of (X, τ) into a Hausdorff space (Y, υ). Then for compact A ⊆ X, TA is compact.

2.6. Connectedness.

Definition 2.6.1. [14, Definition 3.8] A ⊆ X is connected if σα(A) is connected ∀ α > 0.

Proposition 2.6.2. [14, Proposition 3.9] Suppose T ; (X, τ) → (Y, υ) is continuous, and A ⊆ X be connected.
Then, TA is connected.
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