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BEFORE WE BEGIN
I am a big fan of category theoretic notation, and hence abhor a mosaic of concrete examples in the text beyond the
point of clarification of the abstract ideas presented thereof. So, I have tried to make the first part of the text clean
of specific known cases, except for the purpose of citing them as counterexamples. And if the reader is familiar with
one or two basic examples to begin with, this, I think, will rather help him/her imagine around the abstract pillar of
clouds rather than restrciting them to the dimensions of an iron pillar.

Amples examples are provided later: those that in themselves prove to be interesting enough to be worth studying.
Same goes with rigour. Ramakrishna Paramahamsa, a spiritual mystic of Bengal, was of the opinion that the thorn

of knowledge should act as a tool to surgically remove the thorn of ignorance; and then both should be discarded
altogether, just in the same way we do not carry along surgical instruments after we are cured. Same goes for
mathematical rigour. It is acceptable only to the extent it does not undermine the learner’s imagination, only to
the purpose it helps to present a clearer idea or convince something otherwise unbelievable. So, I have kept it concise
and free of such irritating rigour. However, if need be, that can be step-by-step worked out pretty much without any
external help by a reader who is informed with standard undergraduate abstract algebra, and just follows the text
clearly.

1. GROUP ACTION
Let 𝐴 be any set and 𝐺 a group written here in a multiplicative way. We define a group action as a function 𝐺×𝐴→
𝐴; (𝑔, 𝑎) ↦ 𝑔.𝑎 ∈ 𝐴 such that

(i) 𝑔1.
(

𝑔2.𝑎
)

=
(

𝑔1𝑔2
)

.𝑎 for all 𝑔1, 𝑔2 ∈ 𝐺 and all 𝑎 ∈ 𝐴;
(ii) 1𝐺.𝑎 = 𝑎 for all 𝑎 ∈ 𝐴.

We informally say that the group 𝐺 “acts on” the set 𝐴; 𝐺 ↷ 𝐴.
For some 𝑔 ∈ 𝐺, define 𝜎𝑔 ∶ 𝐴 → 𝐴; 𝜎𝑔 (𝐴) = 𝑔.𝑎. Then, 𝜎𝑔 ∈ 𝑆𝐴, i.e., 𝜎𝑔 is essentially a permutation of

𝐴. This is because, we can similarly have a 𝜎𝑔−1 that acts as both left and right inverse of 𝜎𝑔, making 𝜎𝑔 a bijective
map. Indeed, (𝜎𝑔−1◦𝜎𝑔

)

(𝑎) = 𝑔−1. (𝑔.𝑎) =
(

𝑔−1𝑔
)

.𝑎 = 𝑎. Also, 𝜑 ∶ 𝐺 → 𝑆𝐴; 𝑔 ↦ 𝜎𝑔 is a homomorphism, i.e.,
𝜑
(

𝑔1𝑔2
)

(𝑎) = 𝜎𝑔1𝑔2 (𝑎) =
(

𝑔1𝑔2
)

.𝑎 = 𝑔1.
(

𝑔2.𝑎
)

= 𝜎𝑔1
(

𝜎𝑔2 (𝑎)
)

= 𝜑
(

𝑔1
)

◦𝜑
(

𝑔2
)

(𝑎).

2. RING MODULE
A module 𝑀 over a ring 𝑅 is an action of 𝑅 on 𝑀 in the multiplicative way, subject to the following conditions:

(i) (𝑟 + 𝑠)𝑚 = 𝑟𝑚 + 𝑠𝑚;
(ii) (𝑟𝑠)𝑚 = 𝑟(𝑠𝑚);

(iii) 𝑟 (𝑚 + 𝑛) = 𝑟𝑚 + 𝑟𝑛;
(iv) if 1 ∈ 𝑅, 1𝑚 = 𝑚 (in this case, the module is said to be unital)

for all 𝑟, 𝑠 ∈ 𝑅 and all 𝑚, 𝑛 ∈ 𝑀 . It follows that (−𝑟)𝑚 = −𝑟𝑚 and 0𝑚 = 0. A submodule is a subset that is
a module in itself, and it’s trivial that an equivalent condition is that 𝜙 ≠ 𝑁 ⊆ 𝑀 is a submodule if and only if
𝑥, 𝑦 ∈ 𝑁 ⇒ 𝑥 + 𝛼𝑦 ∈ 𝑁 for all 𝛼 ∈ 𝑅.
2.1. Module homomorphism. A module homomorphism 𝜑 ∶𝑀 → 𝑁 where 𝑀 and 𝑁 are modules over a ring 𝑅
is a mapping that keeps the module structure of 𝜑(𝑀) intact, i.e.,

(i) 𝜑 (

𝑚1 + 𝑚2
)

= 𝜑
(

𝑚1
)

+ 𝜑
(

𝑚2
) for all 𝑚1, 𝑚2 ∈𝑀 ;

(ii) 𝜑 (𝑟𝑚) = 𝑟𝜑 (𝑚) where 𝑟 ∈ 𝑅 and 𝑚 ∈𝑀,𝜑 (𝑚) ∈ 𝑁 .
1
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This can alternatively stated that 𝜑 (

𝑚1 + 𝑟𝑚2
)

= 𝜑
(

𝑚1
)

+ 𝑟𝜑
(

𝑚2
) for all 𝑚1, 𝑚2 ∈ 𝑀 and all 𝑟 ∈ 𝑅. The kernel

ker 𝜑 = {𝑚 ∈𝑀 | 𝜑(𝑚) = 0 ∈ 𝑁} and image𝜑 (𝑀) = {𝑛 ∈ 𝑁 | ∃ 𝑚 ∈𝑀 ∋ 𝑛 = 𝜑(𝑚)} are submodules of𝑀 and
𝑁 respectively. An isomorphism 𝜑 ∶ 𝑀 ≅ 𝑁 is a homomorphism which is bijective. The set of homomorphisms
from a module 𝑀 to a module 𝑁 is denoted by Hom𝑅 (𝑀,𝑁). For 𝜑,𝜓 ∈ Hom𝑅 (𝑀,𝑁), we define (𝜑 + 𝜓) (𝑚) =
𝜑(𝑚) + 𝜓(𝑚) for all 𝑚 ∈ 𝑀 . Hom𝑅 (𝑀,𝑁) is an abelian group with this addition. Further, if the acting ring 𝑅 is
commutative, we can establish Hom𝑅 (𝑀,𝑁) as an 𝑅-module. If we let (𝑟𝜑) (𝑚) = 𝑟 (𝜑 (𝑚)) for 𝑟 ∈ 𝑅,𝑚 ∈ 𝑀 ,
we have, for 𝑠 ∈ 𝑅, (𝑟𝜑) (𝛽𝑚) = 𝑟 (𝜑 (𝛽𝑚)) = 𝑟 (𝛽𝜑 (𝑚)) = 𝛽 (𝑟𝜑) (𝑚) since 𝑀 is an 𝑅-module and 𝜑 is a module
homomorphism. Now, if 𝜑1 ∈ Hom𝑅 (𝐿,𝑀) and 𝜑2 ∈ Hom𝑅 (𝑀,𝑁), we have the 𝜑2◦𝜑1 ∈ Hom𝑅 (𝐿,𝑁). With
all these, in a special case, Hom𝑅 (𝑀,𝑀) is a ring with multiplicative identity 𝐼 ∶ 𝑚 ↦ 𝑚 ∀ 𝑚 ∈ 𝑀 . This ring is
called the ring of endomorphisms of 𝑀 over 𝑅, denoted by End𝑅(𝑀).

We have the natural map 𝑓 ∶ 𝑅→ End𝑅(𝑀); 𝑟↦ 𝑟𝐼 , which is not always an injective map. There might be zero
divisors in the ring. But no unit belongs to ker 𝑓 for sure. Otherwise, take for example, 𝑀 = ℤ∕7ℤ, 𝑅 = ℤ. Then
7𝑚 = 0 for all 𝑚 ∈ 𝑀 . But if 𝑅 is a field, this map is injective and we call Im 𝑓 (the isomorphic copy of 𝑅) as the
subring of scalar transformations in End𝑅(𝑀).

Now, a module is an abelian group with some extra condition imposed with respect to a ring 𝑅. ℤ being the most
primitive model of a ring (except the fact that it is an integral domain; well, the most primitive example of an integral
domain), ℤ-modules are just those abelian groups with no other extra condition. Thus module homomorphisms are
necessarily group homomorphisms but the reverse need not be true. Also, if the underlying ring is ℤ, the module
homomorphisms are just the homomorphisms between abelian groups.
2.2. 𝑀 = 𝑅. When the module is same as the ring, there is no reason to believe that the module homomorphism
will be the same as the ring homomorhism.

∙ If 𝑅 = 𝑀 = ℤ, 𝑥 ↦ 2𝑥 is a module homomorphism, but does not take 1 to 1, and hence is not a ring
homomorphism.

∙ If 𝑅 = 𝑀 = 𝐹 [𝑥] for some field 𝐹 , for the ring homomorphim 𝑓 ∶ 𝐹 [𝑥] → 𝐹 [𝑥]; 𝑥 ↦ 𝑥2, 𝑥2 = 𝑓 (𝑥) =
𝑓 (𝑥.1) = 𝑥𝑓 (1) = 𝑥 →← which shows that it is not a module homomorphism.

2.3. Quotient module. Let 𝑁 be a submodule of 𝑀 . As abelian groups 𝑁 is a normal subgroup, and we try to
impose a module structure, naturally, on the quotient group𝑀∕𝑁 by defining for 𝑟 ∈ 𝑅, 𝑟 (𝑚 +𝑁) ≔ 𝑟𝑚+𝑁 . This
is well-defined since if 𝑚1 +𝑁 = 𝑚2 +𝑁 , then 𝑚1 − 𝑚2 ∈ 𝑁 ⇒ 𝑟

(

𝑚1 − 𝑚2
)

∈ 𝑁 ⇒ 𝑟
(

𝑚1 +𝑁
)

= 𝑟
(

𝑚2 +𝑁
).

In fact 𝜋 ∶ 𝑀 → 𝑀∕𝑁 is a module homomorphism, since it is a homomorphism of abelian groups anyway, and
𝑟𝜋(𝑚) = 𝑟(𝑚 +𝑁) = 𝑟𝑚 +𝑁 = 𝜋(𝑟𝑚). Futher, the kernel of the module homomorphism is the same as the kernel
of the group homomorphism over the same sets with the same group operation, so ker 𝜋 = 𝑁 .
Theorem 1 (First Isomorphism Theorem). If 𝜑 ∶𝑀 → 𝑁 is a module homomorphism, the 𝑀∕ ker 𝜑 ≅ Im 𝜑.

Theorem 2 (Second Isomorphism Theorem). Define 𝐴+𝐵 ≔ {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for modules 𝐴 and 𝐵. This is
the smallest module, containing both 𝐴 and 𝐵 as submodules. Also, 𝐴 ∩ 𝐵 is a submodule of both 𝐴 and 𝐵. Then,
(𝐴 + 𝐵)∕𝐴 ≅ 𝐴∕(𝐴 ∩ 𝐵).

Theorem 3 (Third Isomorphism Theorem). If𝐴 and𝐵 are submodules of𝑀 such that𝐵 ⊆ 𝐴, then (𝑀∕𝐴)∕(𝐵∕𝐴) ≅
𝑀∕𝐵.

These results follow from the corresponding theorems for abelian groups, with additional checking for the action
by ring elements.
2.4. Annihilator.

2.4.1. Annihilator of module. If we have an ideal 𝐼 of 𝑅 such that 𝑟𝑚 = 0 for all 𝑟 ∈ 𝐼 and 𝑚 ∈ 𝑀 , then 𝐼 is
called an annihilator of 𝑀 . In that case we can visualize 𝑀 as a ring module over the quotient ring 𝑅∕𝐼 where
(𝑟 + 𝐼) .𝑚 ≔ 𝑟𝑚 where 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀 . In particular, if 𝐼 is maximal, then 𝑅∕𝐼 is a field and hence 𝑀 shall be a
vector space.

If 𝑀 and 𝑁 are modules over ring 𝑅 that is annihilated by ideal 𝐼 , then any 𝑅-module homomorphism 𝑀 → 𝑁
is also an 𝑅∕𝐼-module homomorphism.

Take for example a ℤ-module 𝐺. This means that for some element 𝑥 in the module, 𝑛𝑥 ∈ 𝐺. Thus 𝐺 consists
of distinct cycles of finite or infinite length and so is an abelian group. On the other hand, any abelian group is a
ℤ-module. The action of a ring element from ℤ is absorbed into addition of elements within the module, because
𝑟𝑚 = 𝑚,… , 𝑚

⏟⏞⏟⏞⏟
𝑟

for 𝑟 ∈ ℤ, 𝑚 ∈ 𝐺. Now, if there exists some 𝑚 ∈ ℕ such that 𝑚𝑥 = 0 for all 𝑥 ∈ 𝐺, then 𝑚ℤ is an

annihilator of 𝐺. Even otherwise, simply 𝐺 is a ℤ∕𝑚ℤ-module. In particular for 𝑚 = 𝑝 ∈ ℙ a prime, ℤ∕𝑚ℤ has the
structure of 𝔽𝑝 and so 𝐺 is a vector space over 𝔽𝑝. If 𝐴 is such an additive group, then an ℤ-module homomorphism
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𝐴 → 𝐴 is also a ℤ∕𝑝ℤ-module homomorphim, i.e., a linear transformation with underlying fielf 𝔽𝑝. In particular,
the group of all invertible linear transformations 𝐴→ 𝐴 is the general linear group GL(𝐴).

2.4.2. Annihilator of ideal. We shall denote by Ann𝑀 (𝐼) the annihilator of right ideal 𝐼 of 𝑅 in module 𝑀 as
Ann𝑀 (𝐼) ≔ {𝑚 ∈𝑀 | 𝑎𝑚 = 0 ∀ 𝑎 ∈ 𝐼}. One can see that Ann𝑀 (𝐼) is a submodule of 𝑀 , because if 𝑚1, 𝑚2 ∈
Ann𝑀 (𝐼), then 𝑚1 + 𝛼𝑚2 ∈ Ann𝑀 (𝐼) for all 𝛼 ∈ 𝑅. This submodule may be proper, as in 𝑅 = ℤ,𝑀 = ℤ∕2ℤ ×
ℤ∕6ℤ, 𝐼 = 4ℤ.

2.4.3. Annihilator of submodule. On the other hand, for a submodule 𝑁 of 𝑀 , the annihilator of 𝑁 in 𝑅 consists
of those 𝑟 ∈ 𝑅 for which 𝑟𝑛 = 0 for all 𝑛 ∈ 𝑁 , denoted by Ann𝑅(𝑁). One can see that this is a two-sided ideal of 𝑅
as it absorbs any other element 𝑟1 of 𝑅 this way: 𝑟1𝑟𝑛 = 𝑟10 = 0, or 𝑟𝑟1𝑛 = 𝑟𝑛1 for some 𝑛1 ∈ 𝑁 and 𝑟𝑛1 = 0 for
𝑟 ∈ Ann𝑅(𝑁). The annihilator of a submodule of 𝑀 is contained in 𝑀 , and might be a proper subset as well, e.g.,
𝑅 = ℤ,𝑀 = ℤ∕2ℤ × ℤ∕6ℤ, 𝑁 = ℤ∕2ℤ × {0}.

2.5. Field. If the ring is actually a field (i.e., commutative and without any zero divisors), then the module is essen-
tially a vector space over the field. For commutaive rings a right module is also a left module. Now, if 𝑉 is a vector
space over a field 𝐹 , then 𝑉 is also a module over the polynomial ring 𝐹 [𝑥]. We can assign a linear operator (field-
module homomorphism) 𝑇 ∶ 𝑉 → 𝑉 and with respect to that define for 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯ + 𝑎0 ∈ 𝐹 [𝑥],

𝑝(𝑥).𝑣 = 𝑎𝑛𝑇
𝑛𝑣 + 𝑎𝑛−1𝑇 𝑛−1𝑣 +… 𝑎1𝑇 𝑣 + 𝑎0𝑣

which is consistent with its restriction on 𝐹 , where 𝑣↦ 𝑎0𝑣. Note that this extended action depends upon the linear
operator 𝑇 chosen. If 𝑇 is identically 0, we have the same module structure with no more information about the
elements other than those of 𝐹 . On the other hand, if 𝑇 is the shift operator, (𝑣1,… , 𝑣𝑟

)

↦
(

𝑣2, 𝑣3,… , 𝑣𝑟, 0
), we

get a different 𝐹 [𝑥]-module structure of 𝑉 .
Thus, essentially we arrive at a bijection

{ a module structure of
𝑉 over 𝐹 [𝑥]

}

⟷

{ a vector space 𝑉 over 𝐹
and a linear operator 𝑇 ∶ 𝑉 → 𝑉

}

Now we call a subspace 𝑊 of 𝑉 , 𝑇 -invariant or 𝑇 -stable for a linear operator 𝑇 ∶ 𝑉 → 𝑉 if 𝑇 (𝑊 ) ⊆ 𝑊 .
Thus, for 𝑊 to be a submodule of 𝑉 with respect to 𝐹 [𝑥] we need, necessarily and sufficiently, 𝑊 to be 𝑇 -stable
in 𝑉 , because for 𝑊 to be 𝑇 -stable means 𝑊 to be 𝑇 𝑘-stable for 𝑘 ∈ ℕ and closed with respect to sums as a
module (abelian group). An example might be the shift operator mentioned earlier, where 𝑇 𝑘𝑒𝑖 =

{

𝑒𝑖−𝑘 if 𝑘 < 𝑖;
0 else.

for 𝑒𝑖 = (0, 0,… , 0, 1, 0,… , 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟

) with 1 in the 𝑖th position. Thus if 𝑊 =
{(

𝑣1,… , 𝑣𝑡, 0,…0
)} be a 𝑡-dimensional

subspace of 𝑉 , then 𝑇 𝑘 (𝑣1,… , 𝑣𝓁, 0,… , 0
)

∈ 𝑊 for all 𝓁 ≤ 𝑡 and so 𝑊 is 𝑇 -stable, i.e., submodule.

2.6. Module homomorphism over ℤ. Let 𝐴 be a ℤ-module, 𝑎 ∈ 𝐴 and 𝑛 ∈ ℕ. Now, the module homomorphism
𝜑𝑎 ∶ ℤ∕𝑛ℤ → 𝐴; 𝑘↦ 𝑘𝑎 is well-defined if and only if 𝑛𝑎 = 0, otherwise 𝑘↦ 𝑘 is not a function.

Also, the number of such homormorphisms is bijectively determined by the number of possible mappings of
1 ∈ ℤ∕𝑛ℤ to 𝐴 and these can only be those elements of 𝐴 such that 𝑛𝑎 = 0. The set of such elements, 𝐴𝑛, is in
other words the annihilator of the ideal 𝑛ℤ in ℤ. Thus, Homℤ (ℤ∕𝑛ℤ, 𝐴) ≅ 𝐴𝑛. To show that this is an abelian group
homomorphism, for 𝜑 ∈ Homℤ (ℤ∕𝑛ℤ, 𝐴), 𝜑

(

𝑘1 + 𝑘2
)

=
(

𝑘1 + 𝑘2
)

𝑎 = 𝑘1𝑎 + 𝑘2𝑎 = 𝜑
(

𝑘1
)

+ 𝜑
(

𝑘2
)

.

3. DIRECT PRODUCT
Let 𝑀1,𝑀2,…𝑀𝑘 be 𝑅-modules. Their direct product 𝑀1 ×⋯ ×𝑀𝑘 is defined as the collection of (𝑚1,… , 𝑚𝑘

)

where𝑚𝑖 ∈𝑀𝑖, and addition and multiplication by element from𝑅 is componentwise. If𝑁1,… , 𝑁𝑘 are submodules
of a module 𝑀 , then the following are equivalent:

(1) We have an isomorphism 𝜋 ∶ 𝑁1 ×⋯ ×𝑁𝑘 ≅ 𝑁1 +⋯ +𝑁𝑘;
(

𝑛1,… , 𝑛𝑘
)

↦ 𝑛1 +⋯ + 𝑛𝑘;
(2) For any 𝑗 ∈ {1,… , 𝑘}, 𝑁𝑗 ∩

(

∑

𝑖∈{1,…,𝑘}∖{𝑗}
𝑁𝑖

)

= {0};
(3) Every 𝑛 ∈ 𝑁1 +⋯ +𝑁𝑘 can be written uniquely as a sum 𝑛1 +⋯ + 𝑛𝑘 where 𝑛𝑖 ∈ 𝑁𝑖 (𝑖 = 1,… , 𝑘).
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Proof. (1) ⇒ (2). Let there exist 𝑛 ∈ 𝑁𝑗 ∩

(

∑

𝑖∈{1,…,𝑘}∖{𝑗}
𝑁𝑖

)

. Then 𝑛 = 𝑛𝑗 =
∑

𝑖∈{1,…,𝑘}∖{𝑗}
𝑛𝑖 where

𝑛𝑖 ∈ 𝑁𝑖 (𝑖 = 1,… , 𝑗 − 1, 𝑗 + 1,… , 𝑘), 𝑛𝑗 ∈ 𝑁𝑗 . Then
𝑗−1
∑

𝑖=1
𝑛𝑖 − 𝑛𝑗 +

𝑘
∑

𝑖=𝑗+1
𝑛𝑖 = 0, i.e., (0,… , 0) ≠

(

𝑛1,… , 𝑛𝑗−1,−𝑛𝑗 , 𝑛𝑗+1,… , 𝑛𝑘
)

∈ ker 𝜋 →←.
(2) ⇒ (3). Let it can be written in two different ways: 𝑛 = 𝑛1 +⋯+ 𝑛𝑘 = 𝑛′1 +⋯+ 𝑛′𝑘. By induction we see,
𝑛𝑗 − 𝑛′𝑗 =

𝑗−1
∑

𝑖=1

(

𝑛𝑖 − 𝑛′𝑖
)

∈ 𝑁𝑗 ∩
𝑗−1
∑

𝑖=1
𝑁𝑖 Thus, 𝑛𝑖 = 𝑛′𝑖 for 𝑖 = 1,… 𝑗 − 1 and 𝑛𝑗 = 𝑛′𝑗 . For 𝑗 − 1 = 1 it holds

anyway.
(3) ⇒ (1)

□

If 𝑁1,… , 𝑁𝑘 are submodules of 𝑀 such that 𝑀 =
𝑘
∑

𝑖=1
𝑁𝑖 and we have an isomorphism 𝜋 ∶ 𝑁1 × ⋯ × 𝑁𝑘 ≅

𝑁1 +⋯+𝑁𝑘;
(

𝑛1,… , 𝑛𝑘
)

↦ 𝑛1 +⋯+ 𝑛𝑘, then 𝑀 = 𝑁1⊕⋯⊕𝑁𝑘 is called the internal direct sum of 𝑁1,…𝑁𝑘.
While the direct product is the external direct sum, we see that in the finite case with the above condition (2), both
are the same thing.

4. FREE MODULE

4.1. Generator. If𝐴 is a subset of a module𝑀 , then𝑅𝐴 =

{ 𝑚
∑

𝑖=1
𝑟1𝑎𝑖 | 𝑟𝑖 ∈ 𝑅, 𝑎𝑖 ∈ 𝐴,𝑚 ∈ ℤ+

}

is the submodule
generated by 𝐴 and the least submodule of 𝑀 containing 𝐴. If |𝐴| < ∞ we say that 𝑅𝐴 is finitely generated, and
𝑅𝑎 is a cyclic submodule. If 𝑁 is a submodule, it can have multiple generating sets, but if it is finitely gerenated
there should be a minimum 𝑑 ∈ ℤ+ such that 𝑁 has a generating set consisting of 𝑑 elements, and each such set
is called the minimal set of generators for 𝑁 . If 𝑁1, 𝑁2,… , 𝑁𝑘 be submodules of 𝑀 , then the module 𝑁1 +⋯ +
𝑁𝑘 ≔

{

𝑎1 +… 𝑎𝑛 | 𝑎𝑖 ∈ 𝑁𝑖
}, which is the smallest module containing all the 𝑁𝑖’s. This is actually the submodule

generated by 𝑁1 ∪⋯ ∪𝑁𝑘. If 𝐴𝑖 is the set of generators of 𝑁𝑖 for 𝑖 ∈ {1,… , 𝑘}, then 𝐴1 ∪⋯ ∪ 𝐴𝑘 is the minimal
set of generators for 𝑁1 +⋯ +𝑁𝑘.
4.2. Free module. An𝑅-module 𝐹 is called free on a subset𝐴 of 𝐹 if every element𝑚 ∈𝑀 can be written uniquely

as
𝑛
∑

𝑖=1
𝑟𝑖𝑎𝑖 where 𝑟𝑖 ∈ 𝑅, 𝑎𝑖 ∈ 𝐴 and 𝑛 ∈ ℕ. Note the difference with direct sum, and that this condition is stricter,

i.e.,
𝑛

⨁

𝑖=1
𝑁𝑖 is not necesarily free over

𝑛
⋃

𝑖=1
𝑁𝑖. Take for example, ℤ-module ℤ∕2ℤ⊕ℤ∕2ℤ which is not free over 2ℤ

since though we can find unique 𝑎𝑖 ∈ 2ℤ, (2𝑘 + 1)𝑎𝑖 are equal for all 𝑘 ∈ ℤ which does not give us unique acting
elements from the ring.
4.3. Universal property. Given any set 𝐴 and a mapping 𝜑 from 𝐴 to some 𝑅-module 𝑀 , there is the free module
𝐹 (𝐴) over𝐴 and a unique module homomorphismΦ from𝐹 (𝐴) to𝑅 such that the following diagram is commutative:

𝐴 𝐹 (𝐴)

𝑀
𝜑 Φ

Define 𝐹 (𝐴) to be the set of those functions on 𝐴 to 𝑅 that takes non-zero values only for a finite number of
elements of 𝐴. Identify the element 𝑎 ∈ 𝐴 with 𝑓𝑎 ∈ 𝐹 (𝐴) which takes 𝑎 to 1 ∈ 𝑅 and other elements of 𝐴 to 0.
Thus each element of 𝐹 (𝐴) looks like [with the “basis”{𝑓𝑎 | 𝑎 ∈ 𝐴

}]

𝑛
∑

𝑖=1
𝑟𝑖𝑓𝑎𝑖 ⟷

𝑛
∑

𝑖=1
𝑟𝑖𝑎𝑖. This shows F(A) to be

a free module on 𝐴, for which, of course we have to define addition (

𝑓𝑎1 + 𝑓𝑎2
)

(𝑥) = 𝑓𝑎1(𝑥) + 𝑓𝑎2(𝑥) for 𝑎1, 𝑎2 ∈ 𝐴,
𝑥 ∈ 𝐹 (𝐴) and (

𝑟𝑓𝑎
)

(𝑥) = 𝑟
(

𝑓𝑎(𝑥)
) for 𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅. Now we come to the function Φ assigning to each element of

𝐹 (𝐴),
𝑛
∑

𝑖=1
𝑟𝑖𝑓𝑎𝑖 ↦

𝑛
∑

𝑖=1
𝑟𝑖𝜑

(

𝑎𝑖
)

.
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It is easy to see that Φ|𝐴 = 𝜑 and that Φ is a module homomorphism. Since the values on 𝐹 (𝐴) are uniquely
determined by the values on 𝐴, Φ is the unique extension of 𝜙.

This means that if |𝐴| <∞ and 𝐴 =
{

𝑎1,… , 𝑎𝑛
} then 𝐹 (𝐴) =

𝑛
∑

𝑖=1
𝑅𝑎𝑖 ≅ 𝑅𝑛. Additionally, any two free modules

over a set are isomorphic to each other as modules, and for any set 𝐴, 𝐹 (𝐹 (𝐴)) = 𝐹 (𝐴). When 𝑅 = ℤ, free module
on any set 𝐴 is called the free abelian group on 𝐴. If |𝐴| = 𝑛, it’s the free abelian group of rank 𝑛, isomorphic to
ℤ⊕⋯⊕ ℤ
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑛

. The free module structure enables us to define something for the basis elements, and extend by linearity

for the rest.
5. IRREDUCIBILITY

An 𝑅-module 𝑀 is called irreducible if its only submodules are 0 and 𝑀 , which should be distinct.
Let there be some nozero element 𝑚 ∈ 𝑀 which does not generate the whole of 𝑀 . Then 𝑅𝑚 is a submodule

of 𝑀 distinct from both 0 and 𝑀 , which would contradict the fact that 𝑀 is irreducible. Thus each element of a
nonzero irreducible module acts as its generator, and hence𝑀 is cyclic. It is easy to see that a nonzero cyclic module
whose each element is a generator, is irreducible. Thus the condition is ‘if and only if’.

Therefore, all irreducible ℤ-modules are cyclic groups of prime order, ℤ∕𝑝ℤ, 𝑝 ∈ ℙ.
For commutative 𝑅, the 𝑅-module 𝑀 s irreducible if and only if 𝑀 ≅ 𝑅∕𝐼 (as 𝑅-modules). Of course, if 𝑀 is

irreducible, there is this natural map 𝜑 ∶ 𝑅 → 𝑀, 𝑟 ↦ 𝑟𝑚 where 𝑚 ≠ 0 is a fixed element of 𝑀 . Consider the
subset 𝐼 of 𝑅 such that 𝜌𝑚 = 0 for all 𝜌 ∈ 𝐼 . For 𝜌1, 𝜌2 ∈ 𝐼 , (𝜌1 − 𝜌2

)

𝑚 = 𝜌1𝑚−𝜌2𝑚 = 0 and for 𝑟 ∈ 𝑅, (𝑟𝜌1
)

𝑚 =
𝑟
(

𝜌1𝑚
)

= 𝑟0 = 0, which means that 𝐼 is a subring of 𝑅 which also absorbs multiplication by other elements of 𝑅.
Thus 𝐼 = ker 𝜑 is an ideal of 𝑅. So, 𝜑′ ∶ 𝑅∕𝐼 → 𝑀, (𝑟 + 𝐼) ↦ (𝑟 + 𝐼)𝑚 ≔ 𝑟𝑚 is an isomorphism. This being
an isomorphism also proves conversely that 𝑀 is a nonzero cyclic module generated by each of its elements, i.e., is
irreducible. It remains to show that 𝐼 is maximal; but that is true since 𝐼 is an annihilator of the whole of 𝑀 any
ideal ≠𝑀 containing 𝐼 should be an annihilator of a submodule of 𝑀 , but the only submodules of 𝑀 are 0 and 𝑀 .

If 𝑀1 and 𝑀2 are irreducible 𝑅-modules and 𝜑 ∶ 𝑀1 → 𝑀2 is a homomorphism, then ker 𝜑, which is a sub-
module of 𝑀1, can either be 0 or be 𝑀1: in the latter case the homomorphism is trivial and in the former case it is
an isomorphism.
Schur’s lemma. Now let 𝜑 ∈ End𝑅 (𝑀) where 𝑀 is irreducible. 𝜑 being an isomorphism, there exists 𝜑−1 ∶𝑀

∼
←←←←←←←→

𝑀 such that 𝜑𝜑−1 = 𝜑−1𝜑 = 1, i.e., End𝑅 (𝑀) is a division ring.
COMING UP...

∙ Tensor product
∙ Modules over principal ideal domains
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