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1 Fibrations

If
(

𝐵, 𝑏0
)

is a connected based space, a surjective continuous map 𝑝 ∶ 𝐸 → 𝐵 is called a locally trivial fibration
with fiber 𝐹 if

1. 𝑝−1
(

𝑏0
)

= 𝐹 ;

2. every 𝑥 ∈ 𝐵 has an open neighbourhood 𝑈𝑥 ⊂ 𝐵 and a fiber-preserving homeomorphism 𝜓𝑈𝑥 ∶
𝑝−1

(

𝑈𝑥
)

→ 𝑈𝑥 × 𝐹 such that the following diagram commutes:

𝐸 ⊃ 𝑝−1
(

𝑈𝑥
)

𝑈𝑥 × 𝐹 ⊂ 𝐵 × 𝐹

𝑥 ∈ 𝑈𝑥 ⊂ 𝐵

𝑝

𝜓𝑈𝑥
≅

𝜋1

The idea of a fiber bundle is something like a quotient map, loosening the condition from an equivalence relation
to just a fibration map, and requiring the commutativity with that map:

The space 𝐵 is called the base space and 𝐸 is called the total space. This data for a fiber bundle is denoted by
the triple (𝐹 ,𝐸,𝐵).

A map or morphism of fiber bundles, Φ =
(

𝜑,𝜑
)

∶
(

𝐹1, 𝐸1, 𝐵1
)

→
(

𝐹2, 𝐸2, 𝐵2
)

preserves base points and
is such that the following diagram commutes

𝐸1 𝐸2

𝐵1 𝐵2

𝑝1

𝜑

𝑝2
𝜑

Such a map of fibrations determines a continuous map 𝜑0 ∶ 𝐹1 → 𝐹2. It is an isomorphism if, additionally, we
have Φ−1 ∶

(

𝐹2, 𝐸2, 𝐵2
)

→
(

𝐹1, 𝐸1, 𝐵1
)

such that Φ◦Φ−1 = Φ−1◦Φ = 1.

l The projection map 𝜋 ∶ 𝑋 × 𝐹 → 𝑋 is the trivial fibration over 𝑋 with fiber 𝐹 .

Any fibration that is isomorphic to the trivial fibration is trivial as well.

l Let (1, 0) be the base-point of 𝕊1 ⊂ ℂ and consider the map 𝑓𝑛 ∶ 𝕊1 → 𝕊1; 𝑧 ↦ 𝑧𝑛. The fiber of 𝑓𝑛 are
the 𝑛th roots of unity.

1

https://anamitro.github.io


However, this bundle is not trivial. Consider the possible map to the trivial bundle

𝕊1 × 𝐹 𝕊1

𝕊1 𝕊1

𝜂

𝜋1 𝑓𝑛
𝜂

where |𝐹 | = 𝑛, so 𝕊1 × 𝐹 is disconnected while 𝕊1 is not; so there can be no isomorphism 𝜂 between
them.

l The map exp ∶ ℝ → 𝕊1; 𝑡 ↦ 𝑒2𝜋𝑖𝑡 is a locally trivial fibration, whose fiber is ℤ. It makes the real line
kind of a spiral over 𝕊1. It is a covering map, and hence a locally trivial fibration. This fibration is also
not trivial.

l A covering space is a locally trivial fibration with discrete fiber.

l We can define ℝP𝑛 = 𝕊𝑛∕ ∼, that identifies the antipoles. The projection map 𝑝 ∶ 𝕊𝑛 → ℝP𝑛 is a locally
trivial fibration with fiber the two-point set. This is also non-trivial. The complex analogue will also
work: ℂP𝑛 = 𝕊2𝑛+1∕ ∼ where 𝑥 ∼ 𝑢𝑥 for 𝑢 ∈ 𝕊1 ⊂ ℂ; the locally trivial fibration 𝑝 ∶ 𝕊2𝑛+1 → ℂP𝑛 has
fiber 𝕊1.

l In the Möbius band 𝑀 = [0, 1] × [0, 1]∕ ∼ where (𝑡, 0) ∼ (1 − 𝑡, 1)∀𝑡 ∈ 𝐼 , let 𝐶 =
{(

1
2
, 𝑠
)

∈𝑀
}

be

the centre circle. The projection 𝑝 ∶𝑀 → 𝐶; (𝑡, 𝑠) ↦
(

1
2
, 𝑠
)

is a locally trivial fibration with fiber [0, 1].

2 Smooth manifolds

Let ℝ𝑛 be the affine 𝑛-space, and any function defined one an open set 𝑈 ⊂ ℝ𝑛 with values in ℝ𝑘 is smooth if
its partial derivatives of all orders exist and are continuous,i.e., it is differentiable of class 𝐶∞. In case we need
to talk about an infinite-dimensional coordinate space, ℝ𝐴 can be thought of as the vector space consisting of
all functions 𝐱 ∶ 𝐴 → ℝ. ℝ𝑛 is a special case where 𝐴 = {1, 2,… , 𝑛}. The 𝛼th coordinate of 𝐱 is the value of
vector 𝑥 ∈ ℝ𝐴 on 𝛼 ∈ 𝐴. For a function 𝑓 ∶ 𝑌 → ℝ𝐴, the 𝛼th coordinate of 𝑓 (𝑦) will be denoted by 𝑓𝛼(𝑦).
Now it is but routine to topologize ℝ𝐴 as a Cartesian product of |𝐴| copies of ℝ. For any subset 𝑀 ⊂ ℝ𝐴, it
has the relative topology. Thus a function 𝑓 ∶ 𝑌 → ℝ𝐴 is continuous iff each associate function 𝑓𝛼 ∶ 𝑌 → ℝ
is continuous. For 𝑈 ⊂ ℝ𝑛, a function 𝑓 ∶ 𝑈 → 𝑀 ⊂ ℝ𝐴 is smooth if each of the associated functions
𝑓𝛼 ∶ 𝑈 → ℝ is smooth. If 𝑓 is smooth then 𝜕𝑓

𝜕𝑢𝑖
can be defined as a smooth function 𝑈 → ℝ𝐴 whose 𝛼th

coordinate is
𝜕𝑓𝛼
𝜕𝑢𝑖

for 𝑖 ∈ {1, 2,… , 𝑛}.

A subset 𝑀 ⊂ ℝ𝐴 is a smooth manifold of dimension 𝑛 ≥ 0 if for each 𝑥 ∈ 𝑀 there exists a smooth
function ℎ ∶ 𝑈 → ℝ𝐴 defined on an open set 𝑈 ⊂ ℝ𝑛 such that

(i) ℎ ∶ 𝑈
homeomorphism
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑉 open ⊂ 𝑀 where 𝑥 ∈ 𝑉 ;

(ii) for each 𝑢 ∈ 𝑈 the matrix
[

𝜕ℎ𝛼(𝑢)
𝜕𝑢𝑗

]

has rank 𝑛. In other words, the vectors
{

𝜕ℎ
𝜕𝑢𝑗

}

𝑗∈[𝑛]
, evaluated at 𝑢,

must be linearly independent. [Does this basically mean that no dimension is lost in the mapping?]

The image ℎ(𝑢) = 𝑉 of such a mapping is called a coordinate neighbourhood of 𝑀 , and the triple (𝑈, 𝑉 , ℎ)
is called a local parametrization of 𝑀 . The inverse ℎ−1 ∶ 𝑉 → 𝑈 ⊂ ℝ𝑛 is called a chart which is a local
coordinate system of𝑀 . The most classical and familiar examples of smooth manifolds are curves and surfaces
in ℝ3.

If (𝑈, 𝑉 , ℎ) and
(

𝑈 ′, 𝑉 ′, ℎ′
)

are two local parametrizations of 𝑀 such that 𝑉 ∩ 𝑉 ′ ≠ 𝜙. Then 𝜑 ∶
(ℝ𝑛 ⊃)

(

ℎ′
)−1 (𝑉 ∩ 𝑉 ′) → ℎ−1

(

𝑉 ∩ 𝑉 ′) ⊂ ℝ𝑛; 𝑢′ ↦ ℎ−1
(

ℎ′ (𝑢)
)

is a smooth mapping. To see this, con-

sider arbitrary 𝑥 = ℎ
(

𝑢
)

= ℎ′
(

𝑢′
)

∈ 𝑉 ∩ 𝑉 ′. Choose indices 𝛼1,… , 𝛼𝑛 such that
[𝜕ℎ𝛼𝑖
𝜕𝑢𝑗

]

𝑛×𝑛
evaluated at 𝑢
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is non-singular (how am I sure that such 𝑛 indices exist? Is this because no dimension is lost in the mapping
for a manifold?). It follows from inverse function theorem that one can solve for 𝑢1,… , 𝑢𝑛 as smooth functions
𝑢𝑗 = 𝑓𝑗

(

ℎ𝛼1 (𝑢) ,… , ℎ𝛼𝑛 (𝑢)
)

for 𝑢 in some neighbourhood of 𝑢. This gives us 𝑢 = 𝑓
(

ℎ𝛼1 (𝑢) ,… , ℎ𝛼𝑛 (𝑢)
)

,

and setting ℎ(𝑢) = ℎ′
(

𝑢′
)

, it follows that the function 𝑢′ ↦ ℎ−1ℎ′
(

𝑢′
)

= 𝑓
(

ℎ′𝛼1
(

𝑢′
)

,… , ℎ′𝛼𝑛
(

𝑢′
)

)

is smooth
throughout some neighbourhood of 𝑢′.

Consider two smooth manifolds𝑀 ⊂ ℝ𝐴 and𝑁 ⊂ ℝ𝐵, and let 𝑥 ∈𝑀 and (𝑈, 𝑉 , ℎ) be a local parametriza-
tion fo 𝑀 with 𝑥 = ℎ

(

𝑢
)

. A function 𝑓 ∶ 𝑀 → 𝑁 is said to be smooth at 𝑥 if the composition 𝑓◦ℎ ∶ 𝑈 →
𝑁 ⊂ ℝ𝐵 is smooth throughout some neighbourhood of 𝑢. This definition does not depend on the choice of local
parametrization. The function 𝑓 ∶ 𝑀 → 𝑁 is smooth if it is smooth at 𝑥 for every 𝑥 ∈ 𝑀 . It’s a diffeomor-
phism if it is additionally bijective and 𝑓−1 is also smooth, i.e., a criterion of both-way smoothness imposed
upon a homeomorphism. For a smooth manifold 𝑀 , id𝑀 is always smooth. Composition of two smooth maps
𝑀

𝑔
←←←←←←→𝑀 ′ 𝑓

←←←←←←←→𝑀 ′′ is also smooth.
If 𝑀 is a manifold, a smooth path through fixed 𝑥 ∈ 𝑀 is a smooth function 𝑝 ∶ (−𝜀, 𝜀) → 𝑀 ⊂ ℝ𝐴 such

that 𝑝(0) = 𝑥 for some 𝜀 > 0. The velocity vector of such a path is defined to be 𝑑𝑝
𝑑𝑡

|

|

|

|𝑡=0
=
(

𝑑𝑝𝛼
𝑑𝑡

(0) ∶ 𝑎 ∈ 𝐴
)

∈

ℝ𝐴. A vector 𝑣 ∈ ℝ𝐴 is tangent to𝑀 at 𝑥 if 𝑣 can be expressed as a velocity vector of some smooth path through
𝑥 in 𝑀 . The vector 𝑣 might be identified with the collection of paths 𝑝 which have the common velocity vector
𝑣; this allows an intrinsic definition of tangent vector independent of the embedding in ℝ𝐴. The set of all such
tangent vectors will be called the tangent space of 𝑀 at 𝑥, denoted by D𝑀𝑥. To describe the tangent space in
terms of local parametrization (𝑈, 𝑉 , ℎ) with ℎ

(

𝑢
)

= 𝑥, a vector 𝑣 ∈ ℝ𝐴 is tangent to 𝑀 at 𝑥 if and only if 𝑣

can be expressed as a linear combination of
{

𝜕ℎ
𝜕𝑢𝑖

(

𝑢
)

}

𝑖∈[1,𝑛]
. Thus, the set of all such tangent vectors, called

the tangent space of 𝑀 at 𝑥, denoted by D𝑀𝑥, is an 𝑛-dimensional vector space over ℝ. The tangent manifold
of 𝑀 is defined to be the subspace D𝑀 ⊂ 𝑀 × ℝ𝐴 consisting of all pairs (𝑥, 𝑣) with 𝑥 ∈ 𝑀 and 𝑣 ∈ D𝑀𝑥.
As a subset of ℝ𝐴 ×ℝ𝐴 it is a smooth manifold of dimension 2𝑛.

Any map 𝑓 ∶𝑀 → 𝑁 which is smooth at 𝑥 determines a linear map D 𝑓𝑥 from the tangent space D𝑀𝑥 to

D𝑁𝑓 (𝑥). To see this, consider in D𝑀𝑥, 𝑣 =
𝑑𝑝
𝑑𝑡

|

|

|

|𝑡=0
, velocity vector of some smooth path 𝑥 ∈ 𝑀 , and define

D 𝑓𝑥(𝑣) to be the velocity vector 𝑑 (𝑓◦𝑝)
𝑑𝑡

|

|

|

|𝑡=0
of the image path 𝑓◦𝑝 ∶ (−𝜀, 𝜀) → 𝑁 . This definition does not

depend on the choice of 𝑝 [since we can think of the velocity vector as independent of embedding of 𝑝] and D 𝑓𝑥
is a linear mapping, called the derivative or the Jacobian of 𝑓 at 𝑥. In fact, in terms of local parametrization

(𝑈, 𝑉 , ℎ) one has the explicit formula D 𝑓𝑥

( 𝑛
∑

𝑖=1
𝑐𝑖
𝜕ℎ
𝜕𝑢𝑖

)

=
𝑛
∑

𝑖=1
𝑐𝑖
𝜕 (𝑓◦ℎ)
𝜕𝑢𝑖

for 𝑐𝑖 ∈ ℝ.

Supposing 𝑓 ∶ 𝑀 → 𝑁 to be smooth everywhere, combining all the Jacobians D 𝑓𝑥, one obtains a func-
tion D 𝑓 ∶ D𝑀 → D𝑁 where D 𝑓 (𝑥, 𝑣) =

(

𝑓 (𝑥),D 𝑓𝑥(𝑣)
)

. If 𝔞𝔫∞ be the category whose objects are
smooth manifolds, and morphisms smooth maps, 𝐷 ∶ 𝔞𝔫∞ → 𝔞𝔫∞ is a covariant functor. As a special
consequence, if 𝑓 is a diffeomorphism from 𝑀 to 𝑁 the D 𝑓 is a diffeomorphism from D𝑀 to D𝑁 .

Note that for the affine space ℝ𝑛, Dℝ𝑛
𝑥 = ℝ𝑛, where in the latter case we can view ℝ𝑛 as a vector space.

[WHY?] In particular, for any 𝑢 ∈ ℝ, Dℝ𝑢 = ℝ. For a smooth real-valued function 𝑓 ∶𝑀 → ℝ, its derivative
is D 𝑓𝑥 ∶ D𝑀𝑥 → Dℝ𝑓 (𝑥) = ℝ and so D 𝑓𝑥 ∈ Homℝ

(

D𝑀𝑥,ℝ
)

, the dual vector space. As an element of the
dual space D 𝑓𝑥 = 𝑑𝑓 (𝑥) is called the total differential of 𝑓 at 𝑥. From elementary calculus, we know Leibneitz
rule to hold here: D(𝑓𝑔)𝑥 = 𝑓 (𝑥) D 𝑔𝑥 + 𝑔(𝑥) D𝑓𝑥. If 𝑣 ∈ D𝑀𝑥 (a tangent vector), D 𝑓𝑥(𝑣) ∈ ℝ is called the
directional derivative of the real-valued function 𝑓 in the direction 𝑣. Let ∞ (𝑀,ℝ) be the vector space of all
smooth real-valued functions on 𝑀 . Keeping (𝑥, 𝑣) fixed we can vary 𝑓 over the vector space ∞ (𝑀,ℝ), and
that gives a linear differential operator 𝑋 ∶ ∞ (𝑀,ℝ) → ℝ; 𝑓 ↦ D 𝑓𝑥 (𝑣). Leibnitz rule is automatically
carried on: 𝑋 (𝑓𝑔) = 𝑓 (𝑥)𝑋(𝑔) +𝑋(𝑓 )𝑔(𝑥).

One defect of the above presentation is that the “smoothness” of a manifold 𝑀 is made to depend on some
particular embedding of 𝑀 in a coordinate space. However, we may canonically embed any smooth manifold
𝑀 in one preferred coordinate space, that does not involve and specific other embedding. Let 𝑀 ⊂ ℝ𝐴 and
𝐹 = ∞ (𝑀,ℝ). Then we define 𝑖 ∶ 𝑀 ↪ ℝ𝐹 ; 𝐱 ↦ (𝑓 (𝐱) 𝑓 ∈ 𝐹 ). [Seeing ℝ𝐹 as set of all functions
from 𝐹 to ℝ, each element 𝐱 of 𝑀 gives such a real-valued function on 𝑀 ; an element of ℝ𝐹 whose 𝑓 th
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coordinate is given by 𝑓 (𝐱).] Let 𝑀1 = 𝑖 (𝑀) ⊂ ℝ𝐹 . This 𝑀1 is a smooth manifold in ℝ𝐹 and the canonical
map 𝑖 ∶ 𝑀 → 𝑀1 is a diffeomorphism. Any smooth manifold has a canonical embedding in an associated
coordinate space. This suggests the following definition: Let 𝑀 be a set and 𝐹 be a collection of real-valued
functions on 𝑀 which separates points, i.e., for all 𝑥 ≠ 𝑦 ∈ 𝑀 there exists 𝑓 ∈ 𝐹 with 𝑓 (𝑥) ≠ 𝑓 (𝑦). Then
𝑀 can be identified with its image under the canonical imbedding 𝑖 ∶ 𝑀 → ℝ𝐹 . Basically 𝑀 and 𝑀1 are
topologically same. The collection 𝐹 is a smoothness structure on 𝑀 if the subset 𝑖(𝑀) ⊂ ℝ𝐹 is a smooth
manifold [up to this, 𝐹 is a basis for a smoothness structure] and if 𝐹 = ∞ (𝑀,ℝ).
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