Bundles

Anamitro Biswas Webpage: https://anamitro.github.io

August 20, 2025

1 Fibrations

If (B, b_0) is a connected based space, a surjective continuous map $p: E \to B$ is called a *locally trivial fibration* with *fiber F* if

- 1. $p^{-1}(b_0) = F$;
- 2. every $x \in B$ has an open neighbourhood $U_x \subset B$ and a fiber-preserving homeomorphism ψ_{U_x} : $p^{-1}(U_x) \to U_x \times F$ such that the following diagram commutes:

$$E\supset \qquad p^{-1}\left(U_{x}\right)\xrightarrow{\psi_{U_{x}}}U_{x}\times F \qquad \subset B\times F$$

$$\downarrow^{p} \qquad \qquad \downarrow^{n} \qquad \qquad \downarrow^$$

The idea of a fiber bundle is something like a quotient map, loosening the condition from an equivalence relation to just a fibration map, and requiring the commutativity with that map:

The space B is called the *base space* and E is called the *total space*. This data for a *fiber bundle* is denoted by the triple (F, E, B).

A map or morphism of fiber bundles, $\Phi = (\overline{\varphi}, \varphi) : (F_1, E_1, B_1) \to (F_2, E_2, B_2)$ preserves base points and is such that the following diagram commutes

$$E_{1} \xrightarrow{\overline{\varphi}} E_{2}$$

$$\downarrow^{p_{1}} \qquad \downarrow^{p_{2}}$$

$$B_{1} \xrightarrow{\varphi} B_{2}$$

Such a map of fibrations determines a continuous map $\varphi_0: F_1 \to F_2$. It is an *isomorphism* if, additionally, we have $\Phi^{-1}: (F_2, E_2, B_2) \to (F_1, E_1, B_1)$ such that $\Phi \circ \Phi^{-1} = \Phi^{-1} \circ \Phi = 1$.

 \mathscr{D} The projection map $\pi: X \times F \to X$ is the trivial fibration over X with fiber F.

Any fibration that is isomorphic to the trivial fibration is trivial as well.

 \mathscr{Q} Let (1,0) be the base-point of $\mathbb{S}^1 \subset \mathbb{C}$ and consider the map $f_n: \mathbb{S}^1 \to \mathbb{S}^1; z \mapsto z^n$. The fiber of f_n are the *n*th roots of unity.

1

However, this bundle is not trivial. Consider the possible map to the trivial bundle

$$\begin{array}{ccc} \mathbb{S}^1 \times F & \stackrel{\overline{\eta}}{\longrightarrow} \mathbb{S}^1 \\ \downarrow^{\pi_1} & & \downarrow^{f_n} \\ \mathbb{S}^1 & \stackrel{\eta}{\longrightarrow} \mathbb{S}^1 \end{array}$$

where |F| = n, so $\mathbb{S}^1 \times F$ is disconnected while \mathbb{S}^1 is not; so there can be no isomorphism $\overline{\eta}$ between them.

- \mathscr{D} The map $\exp: \mathbb{R} \to \mathbb{S}^1; t \mapsto e^{2\pi i t}$ is a locally trivial fibration, whose fiber is \mathbb{Z} . It makes the real line kind of a spiral over \mathbb{S}^1 . It is a covering map, and hence a locally trivial fibration. This fibration is also not trivial.
- A covering space is a locally trivial fibration with discrete fiber.
- We can define $\mathbb{R}P^n = \mathbb{S}^n/\sim$, that identifies the antipoles. The projection map $p: \mathbb{S}^n \to \mathbb{R}P^n$ is a locally trivial fibration with fiber the two-point set. This is also non-trivial. The complex analogue will also work: $\mathbb{C}P^n = \mathbb{S}^{2n+1}/\sim$ where $x \sim ux$ for $u \in \mathbb{S}^1 \subset \mathbb{C}$; the locally trivial fibration $p: \mathbb{S}^{2n+1} \to \mathbb{C}P^n$ has fiber \mathbb{S}^1 .
- In the Möbius band $M = [0,1] \times [0,1] / \sim$ where $(t,0) \sim (1-t,1) ∀ t ∈ I$, let $C = \left\{ \left(\frac{1}{2}, s \right) ∈ M \right\}$ be the centre circle. The projection $p: M \to C$; $(t,s) \mapsto \left(\frac{1}{2}, s \right)$ is a locally trivial fibration with fiber [0, 1].

2 Smooth manifolds

Let \mathbb{R}^n be the affine n-space, and any function defined one an open set $U \subset \mathbb{R}^n$ with values in \mathbb{R}^k is smooth if its partial derivatives of all orders exist and are continuous,i.e., it is differentiable of class C^∞ . In case we need to talk about an infinite-dimensional coordinate space, \mathbb{R}^A can be thought of as the vector space consisting of all functions $\mathbf{x}: A \to \mathbb{R}$. \mathbb{R}^n is a special case where $A = \{1, 2, \dots, n\}$. The α th coordinate of \mathbf{x} is the value of vector $\mathbf{x} \in \mathbb{R}^A$ on $\alpha \in A$. For a function $f: Y \to \mathbb{R}^A$, the α th coordinate of f(y) will be denoted by $f_\alpha(y)$. Now it is but routine to topologize \mathbb{R}^A as a Cartesian product of |A| copies of \mathbb{R} . For any subset $M \subset \mathbb{R}^A$, it has the relative topology. Thus a function $f: Y \to \mathbb{R}^A$ is continuous iff each associate function $f_\alpha: Y \to \mathbb{R}$ is continuous. For $U \subset \mathbb{R}^n$, a function $f: U \to M \subset \mathbb{R}^A$ is smooth if each of the associated functions $f_\alpha: U \to \mathbb{R}$ is smooth. If f is smooth then $\frac{\partial f}{\partial u_i}$ can be defined as a smooth function $U \to \mathbb{R}^A$ whose α th coordinate is $\frac{\partial f_\alpha}{\partial u_i}$ for $i \in \{1, 2, \dots, n\}$.

A subset $M \subset \mathbb{R}^A$ is a smooth manifold of dimension $n \geq 0$ if for each $x \in M$ there exists a smooth function $h: U \to \mathbb{R}^A$ defined on an open set $U \subset \mathbb{R}^n$ such that

- (i) $h: U \xrightarrow{\text{homeomorphism}} V^{\text{open}} \subset M \text{ where } x \in V;$
- (ii) for each $u \in U$ the matrix $\left[\frac{\partial h_{\alpha}(u)}{\partial u_{j}}\right]$ has rank n. In other words, the vectors $\left\{\frac{\partial h}{\partial u_{j}}\right\}_{j \in [n]}$, evaluated at u, must be linearly independent. [Does this basically mean that no dimension is lost in the mapping?]

The image h(u) = V of such a mapping is called a *coordinate neighbourhood* of M, and the triple (U, V, h) is called a *local parametrization* of M. The inverse $h^{-1}: V \to U \subset \mathbb{R}^n$ is called a *chart* which is a *local coordinate system* of M. The most classical and familiar examples of smooth manifolds are curves and surfaces in \mathbb{R}^3 .

If (U,V,h) and (U',V',h') are two local parametrizations of M such that $V\cap V'\neq \phi$. Then $\varphi:(\mathbb{R}^n\supset)\left(h'\right)^{-1}\left(V\cap V'\right)\to h^{-1}\left(V\cap V'\right)\subset\mathbb{R}^n; u'\mapsto h^{-1}\left(h'(u)\right)$ is a smooth mapping. To see this, consider arbitrary $\overline{x}=h\left(\overline{u}\right)=h'\left(\overline{u'}\right)\in V\cap V'$. Choose indices α_1,\ldots,α_n such that $\left[\frac{\partial h_{\alpha_i}}{\partial u_j}\right]_{n\times n}$ evaluated at \overline{u}

is non-singular (how am I sure that such n indices exist? Is this because no dimension is lost in the mapping for a manifold?). It follows from inverse function theorem that one can solve for u_1, \ldots, u_n as smooth functions $u_j = f_j\left(h_{\alpha_1}(u), \ldots, h_{\alpha_n}(u)\right)$ for u in some neighbourhood of \overline{u} . This gives us $u = f\left(h_{\alpha_1}(u), \ldots, h_{\alpha_n}(u)\right)$, and setting $h(u) = h'\left(u'\right)$, it follows that the function $u' \mapsto h^{-1}h'\left(u'\right) = f\left(h'_{\alpha_1}\left(u'\right), \ldots, h'_{\alpha_n}\left(u'\right)\right)$ is smooth throughout some neighbourhood of u'.

Consider two smooth manifolds $M \subset \mathbb{R}^A$ and $N \subset \mathbb{R}^B$, and let $\overline{x} \in M$ and (U, V, h) be a local parametrization fo M with $\overline{x} = h\left(\overline{u}\right)$. A function $f: M \to N$ is said to be *smooth* at \overline{x} if the composition $f \circ h: U \to N \subset \mathbb{R}^B$ is smooth throughout some neighbourhood of \overline{u} . This definition does not depend on the choice of local parametrization. The function $f: M \to N$ is *smooth* if it is smooth at x for every $x \in M$. It's a *diffeomorphism* if it is additionally bijective and f^{-1} is also smooth, i.e., a criterion of both-way smoothness imposed upon a homeomorphism. For a smooth manifold M, id $_M$ is always smooth. Composition of two smooth maps $M \xrightarrow{g} M' \xrightarrow{f} M''$ is also smooth.

If M is a manifold, a $smooth\ path$ through fixed $\overline{x} \in M$ is a smooth function $p: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^A$ such that $p(0) = \overline{x}$ for some $\varepsilon > 0$. The $velocity\ vector$ of such a path is defined to be $\frac{dp}{dt}\Big|_{t=0} = \left(\frac{dp_\alpha}{dt}(0): a \in A\right) \in \mathbb{R}^A$. A vector $v \in \mathbb{R}^A$ is tangent to M at x if v can be expressed as a velocity vector of some smooth path through x in M. The vector v might be identified with the collection of paths p which have the common velocity vector v; this allows an intrinsic definition of tangent vector independent of the embedding in \mathbb{R}^A . The set of all such tangent vectors will be called the tangent space of M at x, denoted by DM_x . To describe the tangent space in terms of local parametrization (U,V,h) with $h(\overline{u})=\overline{x}$, a vector $v\in\mathbb{R}^A$ is tangent to M at \overline{x} if and only if v can be expressed as a linear combination of $\left\{\frac{\partial h}{\partial u_i}(\overline{u})\right\}_{i\in[1,n]}$. Thus, the set of all such tangent vectors, called the $tangent\ space$ of M at x, denoted by DM_x , is an n-dimensional vector space over \mathbb{R} . The $tangent\ manifold$ of M is defined to be the subspace $DM \subset M \times \mathbb{R}^A$ consisting of all pairs (x,v) with $x\in M$ and $v\in DM_x$. As a subset of $\mathbb{R}^A \times \mathbb{R}^A$ it is a smooth manifold of dimension 2n.

Any map $f: M \to N$ which is smooth at x determines a linear map D f_x from the tangent space D M_x to D $N_{f(x)}$. To see this, consider in D M_x , $v = \frac{dp}{dt}\Big|_{t=0}$, velocity vector of some smooth path $x \in M$, and define D $f_x(v)$ to be the velocity vector $\frac{d(f \circ p)}{dt}\Big|_{t=0}$ of the image path $f \circ p: (-\varepsilon, \varepsilon) \to N$. This definition does not depend on the choice of p [since we can think of the velocity vector as independent of embedding of p] and D f_x is a linear mapping, called the *derivative* or the *Jacobian* of f at x. In fact, in terms of local parametrization (U, V, h) one has the explicit formula D $f_x\left(\sum_{i=1}^n c_i \frac{\partial h}{\partial u_i}\right) = \sum_{i=1}^n c_i \frac{\partial (f \circ h)}{\partial u_i}$ for $c_i \in \mathbb{R}$.

Supposing $f: M \to N$ to be smooth everywhere, combining all the Jacobians Df_x , one obtains a function $Df: DM \to DN$ where $Df(x, v) = (f(x), Df_x(v))$. If $\mathcal{M}\mathfrak{an}^{\infty}$ be the category whose objects are smooth manifolds, and morphisms smooth maps, $D: \mathcal{M}\mathfrak{an}^{\infty} \to \mathcal{M}\mathfrak{an}^{\infty}$ is a covariant functor. As a special consequence, if f is a diffeomorphism from M to N the Df is a diffeomorphism from Df to Df.

Note that for the affine space \mathbb{R}^n , $D\mathbb{R}^n_x = \mathbb{R}^n$, where in the latter case we can view \mathbb{R}^n as a vector space. [WHY?] In particular, for any $u \in \mathbb{R}$, $D\mathbb{R}_u = \mathbb{R}$. For a smooth real-valued function $f: M \to \mathbb{R}$, its derivative is $Df_x: DM_x \to D\mathbb{R}_{f(x)} = \mathbb{R}$ and so $Df_x \in \operatorname{Hom}_{\mathbb{R}}(DM_x, \mathbb{R})$, the dual vector space. As an element of the dual space $Df_x = df(x)$ is called the *total differential* of f at x. From elementary calculus, we know Leibneitz rule to hold here: $D(fg)_x = f(x)Dg_x + g(x)Df_x$. If $v \in DM_x$ (a tangent vector), $Df_x(v) \in \mathbb{R}$ is called the *directional derivative* of the real-valued function f in the direction f over the vector space of all smooth real-valued functions on f in the direction f over the vector space f in that gives a linear differential operator f in the direction f over the vector space f is automatically carried on: f in the direction f in the direction f over the vector space f in that gives a linear differential operator f in the direction f over the vector space f is automatically carried on: f in the direction f in the direction f in the direction f in the direction f in the vector space f in f in

One defect of the above presentation is that the "smoothness" of a manifold M is made to depend on some particular embedding of M in a coordinate space. However, we may canonically embed any smooth manifold M in one preferred coordinate space, that does not involve and specific other embedding. Let $M \subset \mathbb{R}^A$ and $F = C^{\infty}(M, \mathbb{R})$. Then we define $i : M \hookrightarrow \mathbb{R}^F$; $\mathbf{x} \mapsto (f(\mathbf{x}) f \in F)$. [Seeing \mathbb{R}^F as set of all functions from F to \mathbb{R} , each element \mathbf{x} of M gives such a real-valued function on M; an element of \mathbb{R}^F whose fth

coordinate is given by $f(\mathbf{x})$.] Let $M_1 = i(M) \subset \mathbb{R}^F$. This M_1 is a smooth manifold in \mathbb{R}^F and the canonical map $i:M \to M_1$ is a diffeomorphism. Any smooth manifold has a canonical embedding in an associated coordinate space. This suggests the following definition: Let M be a set and F be a collection of real-valued functions on M which *separates points*, i.e., for all $x \neq y \in M$ there exists $f \in F$ with $f(x) \neq f(y)$. Then M can be identified with its image under the canonical imbedding $i:M \to \mathbb{R}^F$. Basically M and M_1 are topologically same. The collection F is a *smoothness structure* on M if the subset $i(M) \subset \mathbb{R}^F$ is a smooth manifold [up to this, F is a basis for a smoothness structure] and if $F = C^{\infty}(M, \mathbb{R})$.