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1 Fibrations

It (B, bo) is a connected based space, a surjective continuous map p : E — B is called a locally trivial fibration
with fiber F if

1. p_1 (bo) =F;

2. every x € B has an open neighbourhood U, C B and a fiber-preserving homeomorphism yy;
p~ ' (U,) = U, X F such that the following diagram commutes:

Yu,

E> p ' (U,) —=> U, xF CBXF
p/
3
x € U, CB

The idea of a fiber bundle is something like a quotient map, loosening the condition from an equivalence relation
to just a fibration map, and requiring the commutativity with that map:

F

{ E
—
PQUx
—~—

by — B

The space B is called the base space and E is called the fotal space. This data for a fiber bundle is denoted by
the triple (F, E, B).

A map or morphism of fiber bundles, ® = (@, ¢) : (F,, E|, B) > (F,, E,, B,) preserves base points and
is such that the following diagram commutes

E, —% E,
lpl ipz
B, —% B,

Such a map of fibrations determines a continuous map ¢, : F; — F,. Itis an isomorphism if, additionally, we
have ®~! : (F,, E,, By) — (F,, E, By) such that ®o®~! = @~lo® = 1.

&2 The projection map 7 : X X F — X is the trivial fibration over X with fiber F.
Any fibration that is isomorphic to the trivial fibration is trivial as well.

& Let (1,0) be the base-point of S! C C and consider the map f, : S! = S';z — z". The fiber of f, are
the nth roots of unity.
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However, this bundle is not trivial. Consider the possible map to the trivial bundle

SlxF 'y sl
J/ﬂl J/fn

s' —— s!

where |F| = n, so S! x F is disconnected while S! is not; so there can be no isomorphism # between
them.

& The mapexp : R — S';t = €2 is a locally trivial fibration, whose fiber is Z. It makes the real line
kind of a spiral over S!. It is a covering map, and hence a locally trivial fibration. This fibration is also
not trivial.

& A covering space is a locally trivial fibration with discrete fiber.

2 We can define RP" = S"/ ~, that identifies the antipoles. The projection map p : S" — RP”" is a locally
trivial fibration with fiber the two-point set. This is also non-trivial. The complex analogue will also
work: CP" = S$?"*1/ ~ where x ~ ux foru € S! C C; the locally trivial fibration p : S***! — CP” has
fiber S!.

/2 Tn the Mdbius band M = [0, 1] x [0, 1]/ ~ where (,0) ~ (1 — £, 1)V € I, let C = {(%s) € M} be

the centre circle. The projectionp : M — C;(t,s) — (%, s) is a locally trivial fibration with fiber [0, 1].

2 Smooth manifolds

Let R” be the affine n-space, and any function defined one an open set U C R” with values in R¥ is smooth if
its partial derivatives of all orders exist and are continuous,i.e., it is differentiable of class C*. In case we need
to talk about an infinite-dimensional coordinate space, R4 can be thought of as the vector space consisting of
all functions x : A — R. R" is a special case where A = {1,2,...,n}. The ath coordinate of x is the value of
vector x € R4 on @ € A. For a function f : Y — R4, the ath coordinate of f(y) will be denoted by fa).
Now it is but routine to topologize R4 as a Cartesian product of |A| copies of R. For any subset M C R4, it
has the relative topology. Thus a function f : ¥ — R4 is continuous iff each associate function f, : ¥ - R
is continuous. For U C R”, a function f : U — M C RA is smooth if each of the associated functions

. . 0 .
fy ¢ U — Rissmooth. If f is smooth then 6_f can be defined as a smooth function U — R4 whose ath
u;

. . Ofy . .
coordinate is o fori € {1,2,...,n}.

U;

A subset M C R4 is a smooth manifold of dimension n > 0 if for each x € M there exists a smooth
function 4 : U — R“ defined on an open set U C R” such that

. homeomorphism
i) h: U—— V" Cc M where x € V;

)

] has rank #n. In other words, the vectors { % } , evaluated at u,
Uj Ui ) jemn
must be linearly independent. [Does this basically mean that no dimension is lost in the mapping?]

(i1) for each u € U the matrix [

The image A(u) = V of such a mapping is called a coordinate neighbourhood of M, and the triple (U, V', h)
is called a local parametrization of M. The inverse h™' : V — U C R" is called a chart which is a local
coordinate system of M. The most classical and familiar examples of smooth manifolds are curves and surfaces
in R3.
If (U,V,h) and (U’, V’,h’) are two local parametrizations of M such that V n V' # ¢. Then ¢ :
(R" D) (h’)_1 (Vav') -~ (VnV’') c R%u — h~' (B (u)) is a smooth mapping. To see this, con-
oh,

sider arbitrary x = h (ﬁ) =n <7> € V nV'. Choose indices aj, ..., a, such that [a—’] evaluated at u
nxn

Uj

2



is non-singular (how am I sure that such # indices exist? Is this because no dimension is lost in the mapping
for a manifold?). It follows from inverse function theorem that one can solve for u, ..., u, as smooth functions

u; = f; (hm1 w,..., han (u)) for u in some neighbourhood of u. This gives us u = f <ha| w,..., haﬂ (u)),

and setting h(u) = h’ (u’), it follows that the function u’ — h~'h’ (u’) =f (h;l (u’) s h;" (u’)) is smooth
throughout some neighbourhood of «’.

Consider two smooth manifolds M ¢ R4 and N ¢ RE, andletx € M and (U, V, h) be alocal parametriza-
tion fo M withx = h (E) A function f : M — N is said to be smooth at x if the composition foh : U —
N c RB3 is smooth throughout some neighbourhood of . This definition does not depend on the choice of local
parametrization. The function f : M — N is smooth if it is smooth at x for every x € M. It’s a diffeomor-
phism if it is additionally bijective and f~! is also smooth, i.e., a criterion of both-way smoothness imposed
upon a homeomorphism. For a smooth manifold M, id,, is always smooth. Composition of two smooth maps

M M’—f> M is also smooth.

If M is a manifold, a smooth path through fixed X € M is a smooth function p : (—€,€) - M C R4 such

- d d
that p(0) = x for some € > 0. The velocity vector of such a path is defined to be d_lt) = ( jta ©0):a€ A> S
=0

RA. A vector v € R4 is tangent to M at x if v can be expressed as a velocity vector of some smooth path through
x in M. The vector v might be identified with the collection of paths p which have the common velocity vector
v; this allows an intrinsic definition of tangent vector independent of the embedding in R4. The set of all such
tangent vectors will be called the tangent space of M at x, denoted by D M. To describe the tangent space in
terms of local parametrization (U, V', h) with h (ﬁ) = X, a vector v € R4 is tangent to M at X if and only if v

Uj
the fangent space of M at x, denoted by D M, is an n-dimensional vector space over R. The tangent manifold
of M is defined to be the subspace D M C M x R4 consisting of all pairs (x,v) with x € M andv € DM,
As a subset of R4 x R4 it is a smooth manifold of dimension 2x.
Any map f : M — N which is smooth at x determines a linear map D f, from the tangent space D M, to

can be expressed as a linear combination of { g—h (E) } . Thus, the set of all such tangent vectors, called
i€[1,n]

. S d
D N (). To see this, consider in D M, v = o

i velocity vector of some smooth path x € M, and define
=0
d(fop)

d

D f,(v) to be the velocity vector of the image path fop : (—¢,&) — N. This definition does not

depend on the choice of p [since we can think of the velocity vector as independent of embedding of p] and D fx
is a linear mapping, called the derivative or the Jacobian of f at x. In fact, in terms of local parametrization

n n
o
(U,V, h) one has the explicit formula D f (; ciaa—:i> = Z{ c; J (guih) forc; € R.

Supposing f : M — N to be smooth everywhere, combining all the Jacobians D f, one obtains a func-
tionDf : DM — DN where D f(x,v) = (f(x),Dfx(u)). If Man® be the category whose objects are
smooth manifolds, and morphisms smooth maps, D : Man® — Man® is a covariant functor. As a special
consequence, if f is a diffeomorphism from M to N the D f is a diffeomorphism from D M to D N.

Note that for the affine space R”, DR” = R", where in the latter case we can view R" as a vector space.
[WHY?] In particular, for any u € R, DR, = R. For a smooth real-valued function f : M — R, its derivative
isDf, :DM, > DR, =RandsoD f, € Homyg (D M,,R), the dual vector space. As an element of the
dual space D f,, = d f(x) is called the total differential of f at x. From elementary calculus, we know Leibneitz
rule to hold here: D(fg), = f(x)Dg, + g(x)D f,. If v € D M, (atangent vector), D f,(v) € R is called the
directional derivative of the real-valued function f in the direction v. Let C*® (M, R) be the vector space of all
smooth real-valued functions on M. Keeping (x, v) fixed we can vary f over the vector space C* (M, R), and
that gives a linear differential operator X : C* (M,R) - R; f +— D f, (v). Leibnitz rule is automatically
carried on: X (fg) = f(x)X(g) + X(f)g(x).

One defect of the above presentation is that the “smoothness” of a manifold M is made to depend on some
particular embedding of M in a coordinate space. However, we may canonically embed any smooth manifold
M in one preferred coordinate space, that does not involve and specific other embedding. Let M C R4 and
F = C®(M,R). Then we definei : M < RF; x = (f(x) f € F). [Seeing R as set of all functions
from F to R, each element x of M gives such a real-valued function on M; an element of RY whose fth



coordinate is given by f(x).] Let M, =i (M) C RF. This M | is a smooth manifold in R¥ and the canonical
mapi : M — M, is a diffeomorphism. Any smooth manifold has a canonical embedding in an associated
coordinate space. This suggests the following definition: Let M be a set and F be a collection of real-valued
functions on M which separates points, i.e., for all x # y € M there exists f € F with f(x) # f(»y). Then
M can be identified with its image under the canonical imbedding i : M — RF. Basically M and M, are
topologically same. The collection F is a smoothness structure on M if the subset i(M) C RF is a smooth
manifold [up to this, F is a basis for a smoothness structure] and if F = C® (M, R).
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