Basic Homotopy Theory, and CW Complexes: How To Build Them

Anamitro Biswas Email: anamitroappu@gmail.com

1 Homotopy

Is $\mathbb{R} \approx \mathbb{R}^2$? No, since removing one point from \mathbb{R} makes it disconnected, while removing a countable number of points from \mathbb{R}^2 does not create a disconnection. But they are in many ways similar, and one is an expansion of the other. Homeomorphism is a very rigid condition imposed upon similarity, and does not reflect the necessary conditions for our working cases of similarity.

Problem 1 We want a looser version of homeomorphism.

1.1 Homotopy of maps

Definition 2 Let $f,g : X \to Y$ be maps (continuous functions). We say $f \simeq g$ if \exists map $F : X \times I \to Y \ni F(x,0) = f(x), F(x,1) = g(x) \forall x \in X$. F is a homotopy from f to g; $F : f \simeq g$.

Observation 3 " \simeq " is an equivalence relation. Let $f \in C(X, Y)$ be a map from X to Y; $[f] = \{g \in C(X, Y) \mid f \simeq g\}$, equivalence class of f.

Proof.

(i) For any map $f : X \to Y, f \simeq f$.

Here we simply consider F(x, t) to be independent of t, and $F(x, t) = f(x) \forall x \in X$.

(ii) Let $f, f' : X \to Y$. Then, $f \simeq f' \Rightarrow f' \simeq f$.

There exists homotopy $F : X \times I \to Y$ such that F(x,0) = f(x) and F(x,1) = f'(x). We define $G : X \times I \to Y$ such that $G(x,t) = F(x,1-t) \forall t \in [0,1]$. We have that G is a homotopy between f' and f.

(iii) Let $f, f', f'' : X \to Y$. Then, $f \simeq f', f' \simeq f'' \Rightarrow f \simeq f''$.

There exists $F : X \times I \to Y$ such that F(x, 0) = f(x), F(x, 1) = f'(x) and $F' : X \times I \to Y$ such that F'(x, 0) = f'(x), F'(x, 1) = f''(x). Define $G : X \times I \to Y$ with

We note that *G* is well-defined and for $t = \frac{1}{2}$, F(x, 2t) = f'(x) = F'(x, 2t - 1). Because *G* is continuous on the two closed subsets $X \times \left[0, \frac{1}{2}\right]$ and $X \times \left[\frac{1}{2}, 1\right]$ of $X \times I$, by *Pasting Lemma*, *G* is continuous throughout and the required homotopy. \Box

1.2 Homotopy equivalence of spaces

Definition 4 Suppose $\exists f : X \to Y, g : Y \to X \ni g \circ f \simeq id_X, f \circ g \simeq id_Y$. Then we say that X is homotopically equivalent to Y, $X \simeq Y$, or that X and Y have the same homotopy type.

Observation 5 $X \approx Y \Rightarrow X \simeq Y$

Proof. f^{-1} exists and is continuous. $g = f^{-1}$.

Remark 6 Converse is not true.

Counterexample. $X = \mathbb{R}^2$, $Y = \{(0,0)\}$. $X \not\approx Y$ since X is not compact but Y is. Let $F : \mathbb{R}^2 \times I \to \mathbb{R}^2$; $(x = (x_1, x_2), t) \mapsto (1 - t) x [x \in \mathbb{R}^2, t \in [0, 1]]$. Then, $F(x, 0) = \mathrm{id}_X$ and $F(x, 1) = \mathrm{id}_Y$. So, there exists a homotopy from id_X to id_Y .

Alternatively, we define $i : \{(0,0)\} \to \mathbb{R}^2, (0,0) \mapsto (0,0); c : \mathbb{R}^2 \to \{(0,0)\}$. Then $i \circ c : \mathbb{R}^2 \to \mathbb{R}^2; x \mapsto (0,0) \forall x \in \mathbb{R}^2$ and $c \circ i : \{(0,0)\} \to \{(0,0)\}; c \circ i = id_Y. \Box$

Definition 7 A path-connected space is called contractible is it is homotopically equivalent to a one-point space, *i.e.*, it has the same homotopy type as a point.

Observation 8 Any 2 maps $f, g : X \to Y$, where Y is contractible, are homotopic.

Proof. Let Y be contractible. So there should exist a homotopy $H : 1_Y \simeq f_c$ where $f_c : Y \to \{c\} \subseteq Y$.

Let X be another space and we consider a map $g : X \to Y$. Then $H \circ g : X \times I \to Y$ is a homotopy between g and the constant map $\tilde{f} : X \to \{c\} \subseteq Y$. So every map $g : X \to Y$ is homotopic to the constant map \tilde{f} . Since homotopy is an equivalent relation, this implies that all maps $X \to Y$ are homotopic. \Box

Definition 9 A retraction is a map r from a space X to its subset A, such that $r|_A = id_A$.

A deformation retraction is a homotopy $F : X \times I \to A \subseteq X$ such that $F|_{A,I} = id_A$. Here, additionally, the map F is continuous. The retract is said to be "relative A" or relA.

1.3 Homotopy between Paths

For a topological space X, a *path* is a map σ : $[0, 1] \rightarrow X$. A path is called a *loop* at $x \in X$ if $\sigma(0) = \sigma(1) = x$. Let α and β be paths from x to y in X. We say that α *is homotopic to* β relative to the endpoints (0, 1)

$$\alpha \simeq \beta \operatorname{rel}(0, 1)$$

 $\text{if } \exists \ F \ \colon I \times I \to X \ \ni \\$

$$F(s, 0) = \alpha(s) \quad \forall \quad s \in I;$$

$$F(s, 1) = \beta(s) \quad \forall \quad s \in I;$$

$$F(0, t) = \alpha(0) = \beta(0) = x \quad \forall \quad t \in I;$$

$$F(1, t) = \alpha(1) = \beta(1) = y \quad \forall \quad t \in I.$$

We define $F_t : I \to X$; $F_t(s) = F(s, t)$ for each fixed $t \in I$. Therefore, F_t is also a path from x to y. Thus, homotopy can be seen as kind of a continuous deformation of path α to path β .

We define $P(X; x, y) = \{ \alpha : I \to X \mid \alpha(0) = x, \alpha(1) = y \}$. "Being homotopic" is an equivalence relation on P(X; x, y) because

(i) Consider $F(s,t) = \alpha(s) \forall s, t \in I$ which shows that $\alpha \simeq \alpha$ rel(0, 1), i.e., reflexivity.

(ii) If $F : \alpha \simeq \beta \operatorname{rel}(0, 1)$ then $G : I \times I \to X$; G(s, t) = F(s, 1 - t) gives $G : \beta \simeq \alpha \operatorname{rel}(0, 1)$. Symmetry.

(iii) If we have $F : \alpha \simeq \beta$ rel(0, 1) and $G : \beta \simeq \gamma$ rel(0, 1), then we define the *concatination* of F and G by

$$(F * G)(s, t) = \begin{cases} F(s, 2t) & \text{for } 0 \le t \le \frac{1}{2}; \\ G(s, 2t - 1) & \text{for } \frac{1}{2} \le t \le 1. \end{cases}$$

which is continuous by the pasting lemma, whence $F * G : \alpha \simeq \gamma \operatorname{rel}(0, 1)$. Transitivity.

Note 10 *Concatination refers to basically traversing the first path in half the time with double speed, and then the second path in the other half of the time with double speed.*

1.4 Fundamental Group

The equivalence class of $\alpha \in P(X; x, y)$ is denoted by $[\alpha]$ by $[\alpha] = \{\alpha' \in P(X; x, y) \mid \alpha \simeq \alpha' \operatorname{rel}(0, 1)\}$. The set of all such equivalence classes is denoted by P[X; x, y]. Let's divert our discussion to loops at a point, say, x_0 . We denote $P[X; x_0, x_0]$ by $\pi_1(X, x_0) \coloneqq \{[\sigma] \mid \sigma \text{ is a loop at } x_0 \in X\}$. We define a binary operation $[*] : \pi_1(X, x_0) \times \pi_1(X, x_0) \to \pi_1(X, x_0); [\sigma][*][\tau] \mapsto [\sigma * \tau]$, where concatination $\sigma * \tau : I \to X$ is defined in our old way:

$$\sigma * \tau(s) = \begin{cases} \sigma(2s) & \text{when } 0 \le s \le \frac{1}{2}; \\ \tau(2s-1) & \text{when } \frac{1}{2} \le s \le 1. \end{cases}$$

The operation [*] is well-defined, i.e., it does not depend on the choice of representatives σ and τ . If $\sigma \simeq \sigma' \operatorname{rel}(0, 1)$ and $\tau \simeq \tau' \operatorname{rel}(0, 1)$ then $\sigma * \tau \simeq \sigma' * \tau' \operatorname{rel}(0, 1)$. Now we observe that

- (i) Of course, concatination gives another loop, and hence its equivalence class gives an element of $\pi_1(X, x_0)$.
- (ii) * is associative and hence so is [*].
- (ii) [e] is the unit in $\pi_1(X, x_0)$ where $e: I \to X$; $e(s) = x_0 \forall s \in I$, the constant loop at x_0 .
- (iii) We observe that $\sigma^{-1}(s) = \sigma(1-s); [\sigma]^{-1} = [\sigma^{-1}]$ where $\sigma * \sigma^{-1} \simeq \sigma^{-1} * \sigma \simeq e \operatorname{rel}(0, 1)$.
- We conclude that $\pi_1(X, x_0)$ forms a group with [*] as a binary operation, known as the *fundamental group*. If $x_1 \in X$ is another point in X then $\pi_1(X, x_1)$ makes sense.

Theorem 11 If X is path-connected then a path α from x_0 to x_1 induces an isomorphism α_* from $\pi_1(X, x_0)$ to $\pi_1(X, x_1)$ by

$$\begin{array}{rcl} \alpha_* : \pi_1 \left(X, x_0 \right) & \to & \pi_1 \left(X, x_1 \right); \\ & & \left[\sigma \right] & \mapsto & \left[\alpha^{-1} * \sigma * \alpha \right]; \ describe \ \alpha^{-1}, \ loop \ \sigma, \ return \ to \ x_1. \end{array}$$

To check that α_* is a well-defined isomorphism, we need to show that

(i) $\alpha_*([\sigma][\tau]) = \alpha_*([\sigma]) \alpha_*([\tau]);$

(ii)
$$(\alpha_*)^{-1} = (\alpha^{-1})_*$$
.

Because the operation * is well-defined, if σ is a loop based at x_0 , then $\alpha^{-1} * (\sigma * \alpha)$ is a loop based at x_1 . To show α_* to be a group isomorphism, we need

$$\begin{aligned} \alpha_* \left([\sigma] \right) \alpha_* \left([\tau] \right) &= \left(\left[\alpha^{-1} * \sigma * \alpha \right] \right) \left(\left[\alpha^{-1} * \tau * \sigma \right] \right) \\ &= \left[\alpha^{-1} * \sigma * \alpha * \alpha^{-1} * \tau * \sigma \right] \\ &= \left[\alpha^{-1} \right] \left[\sigma * \tau \right] \left[\alpha \right] \\ &= \alpha_* \left([\sigma] \left[\tau \right] \right). \end{aligned}$$

Let β denote the path α^{-1} , then β_* is the inverse for α_* . For each $[\sigma] \in \pi_1(X, x_1), \beta_*([\sigma]) = [\beta^{-1} * \sigma * \beta] = [\alpha * \sigma * \alpha^{-1}] \Rightarrow \alpha_*(\beta_*[\sigma]) = [\alpha^{-1} * \alpha * \sigma * \alpha^{-1} * \alpha] = [\sigma]$. Similarly $\beta_*(\alpha_*[\sigma]) = [\sigma]$ for all $[\sigma] \in \pi_1(X, x_0)$.

Moreover, if $\alpha \simeq \beta$ rel(0, 1) for $\alpha, \beta \in P[X; x_0, x_1]$, then $\alpha_* = \beta_*$.

Thus, it makes sense to talk about the fundamental group of a space, irrespective of the base point.

1.5 Homotopy groups

Let $f : X \to Y$, and [f] be the equivalence class containing f, called its *homotopy class*. The collection of all homotopy classes $X \to Y$ is denoted by [X, Y]. In the set $\pi_n(X) = [S^n, X]$, we can similarly define a binary operation for $f, g : S^n \to X$,

$$(fg)(s_1, \dots, s_n) = \begin{cases} f(2s_1, s_2, \dots, s_n), s_1 \in [0, \frac{1}{2}], \\ g(2s_1 - 1, s_2, \dots, s_n), s_1 \in [\frac{1}{2}, 1]. \end{cases}$$

The identity will be the class of the constant map to the base point, and $-f(s_1, s_2, ..., s_n) = f(1 - s_1, s_2, ..., s_n)$. This group $\pi_n(X)$ is called the *nth* (*ordinary*) *homotopy group* of X. In fact, for $n \ge 2$ they are all abelian.

1.6 Homotopy extension property

2 Cell complexes

2.1 Weak Topology

Let X be a topological space and let $W_{\alpha}, \alpha \in A$ be subsets of X that in themselves are topological spaces. A weak topology on X is the largest topology such that the inclusion map $W_{\alpha} \hookrightarrow X$ is continuous for each $\alpha \in A$. Equivalently, a subset U of X is open iff $U \cap W_{\alpha} \subseteq W_{\alpha}$ is open for each $\alpha \in A$. The collection $\{U \subseteq X \mid U \cap W_{\alpha} \subseteq_{\text{open}} W_{\alpha} \forall \alpha \in A\}$ forms a topology on X, and every other topology that has the inclusion maps continuous, is contained in this weak topology.

Given $\{W_{\alpha}\}_{\alpha \in A}$ we can, if they are not disjoint, consider homeomorphic spaces that are disjoint, and take disjoint union $\prod_{\alpha \in A} W_{\alpha} = X$, on which we can consider the weak topology.

2.2 Identification maps

2.3 Adjunction spaces

Let X and Y be unbased topological spaces. We consider $W \subset X$ and let $\varphi : W \to Y$ be a free map, i.e., a map which need not map base point to base point. On $Y \sqcup X$ we define the equivalence relation $w \sim \varphi(w)$. This gives us the identification space $Y \cup_{\varphi} X$, called the *adjunction space*.

2.4 Wedge

Let (X_{α}, x_{α}) ; $\alpha \in A$ be based spaces. When we quotient the disjoint union $\coprod X_{\alpha}$ by $\{x_{\alpha} \mid \alpha \in A\}$, we basically identify all the base points into one, and this gives us the *wedge* of $\{(X_{\alpha}, x_{\alpha})\}_{\alpha \in A}$, denoted as $\bigvee_{\alpha \in A} X_{\alpha}$.

2.5 CW complexes

Note that for each $\alpha \in A$, there is an injection $i_{\alpha} : X_{\alpha} \to \bigvee_{\alpha \in A} X_{\alpha}; x \mapsto [x] \ \forall x \in X_{\alpha}$. Furthermore, the maps $f_{\alpha} : X_{\alpha} \to Y$ determine a unique map $f : \bigvee_{\alpha \in A} X_{\alpha} \to Y \ \ni f i_{\alpha} = f_{\alpha}$.

If we consider X to be an unbased space and assume $\varphi_{\alpha} : S^{n-1} = S_{\alpha}^{n-1} \to X$ to be free maps for $\alpha \in A$, these determine a free map (by pasting lemma) $\varphi : \prod_{\alpha \in A} S_{\alpha}^{n-1} \to X$. Let $E_{\alpha}^{n-1} = E^n$ for all $\alpha \in A$. Since $\prod_{\alpha \in A} S_{\alpha}^{n-1} \subset \prod_{\alpha \in A} E_{\alpha}^n$, we can form the adjunction space by quotienting with respect to $\prod_{\alpha \in A} S_{\alpha}^{n-1}$ as: $X \cup_{\alpha \in A} \prod_{\alpha \in A} E_{\alpha}^n$. This procedure is called *attaching n-cells*.

We consider an unbased Hausdorff topological space X, which we construct as follows: we consider a chain of subsets $X^0 \subseteq X^1 \subseteq X^2 \subseteq \cdots \subseteq X^{n-1} \subseteq X^n \subseteq \cdots \subseteq X$, which we construct by considering X^0 as a 0-cell or consisting of discrete vertices, and attaching *n*-cells to X^{n-1} to form X^n . We have to assume that for each *n*, there exist *attaching maps* φ_{β} : $S^{n-1} \to X^{n-1}$; $\beta \in B$ and we thus form $X^n \coloneqq X^{n-1} \cup_{\varphi} \prod_{\beta \in B} E_{\alpha}^n$. Note that

with each such formation of the disjoint union $X^{n-1} \sqcup \prod_{\beta \in B} E_{\alpha}^{n}$ and subsequent quotienting, for each $\beta \in B$,

we get a continuous *characteristic function* Φ_{β} : $(E^n, S^{n-1}) \to (X^n, X^{n-1})$ and $\Phi|_{S^{n-1}_{\beta}} = \varphi_{\beta}$. The image $\Phi_{\beta}\left(E^n_{\beta} - S^{n-1}_{\beta}\right) = e^n_{\beta}$ is called an *open n-cell* (although it need not be open in X, and $\Phi_{\beta}|_{E^n_{\beta} - S^{n-1}_{\beta}} : E^n_{\beta} - S^{n-1}_{\beta} \to e^n_{\beta}$ is a homeomorphism. The closure of e^n_{β} is $\Phi_{\beta}\left(E^n_{\beta}\right)$ and the topological boundary $\partial e^n_{\beta} = \Phi_{\beta}\left(S^{n-1}_{\beta}\right)$. Then Φ_{β} : $(E^n, S^{n-1}) \to (\overline{e}^n_{\beta}, \partial e^n_{\beta})$ is a continuous function of pairs. This closed set $\overline{e}^n_{\beta} = \Phi(E^n) \subseteq X^n \subseteq X$ is called a *(closed) n-cell* that is being attached. X as a whole is endowed with the weak topology with respect to all the closed cells $\{\overline{e}^n_{\beta}\}_{\beta \in B, n \in \mathbb{N} \cup \{0\}}$. Here, $X^n - X^{n-1}$ is a disjoint union of the e^n_{β} and we can write $X^n = X^{n-1} \cup \bigcup_{\beta \in B} e^n_{\beta}$ or $X^n = X^{n-1} \cup \bigcup_{\beta \in B} e^n_{\beta}$.

A CW complex is called finite if it has finitely many cells, and is called finite-dimensional (dimension N) if there exists $N \in \mathbb{N}$ such that $X^{N-1} \neq X$ but $X^n = X$ for all $n \ge N$.