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1 Homotopy

Is ℝ ≈ ℝ2? No, since removing one point from ℝ makes it disconnected, while removing a countable number
of points from ℝ2 does not create a disconnection. But they are in many ways similar, and one is an expansion of
the other. Homeomorphism is a very rigid condition imposed upon similarity, and does not reflect the necessary
conditions for our working cases of similarity.

Problem 1 We want a looser version of homeomorphism.

1.1 Homotopy of maps

Definition 2 Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be maps (continuous functions). We say 𝑓 ≃ 𝑔 if ∃ map 𝐹 ∶ 𝑋 × 𝐼 →
𝑌 ∋ 𝐹 (𝑥, 0) = 𝑓 (𝑥), 𝐹 (𝑥, 1) = 𝑔(𝑥) ∀ 𝑥 ∈ 𝑋. 𝐹 is a homotopy from 𝑓 to 𝑔; 𝐹 ∶ 𝑓 ≃ 𝑔.

Observation 3 “≃” is an equivalence relation. Let 𝑓 ∈ (𝑋, 𝑌 ) be a map from𝑋 to 𝑌 ; [𝑓 ] = {𝑔 ∈ (𝑋, 𝑌 ) ∣ 𝑓 ≃ 𝑔},
equivalence class of 𝑓 .

Proof.

(i) For any map 𝑓 ∶ 𝑋 → 𝑌 , 𝑓 ≃ 𝑓 .

Here we simply consider 𝐹 (𝑥, 𝑡) to be independent of 𝑡, and 𝐹 (𝑥, 𝑡) = 𝑓 (𝑥) ∀ 𝑥 ∈ 𝑋.

(ii) Let 𝑓, 𝑓 ′ ∶ 𝑋 → 𝑌 . Then, 𝑓 ≃ 𝑓 ′ ⇒ 𝑓 ′ ≃ 𝑓 .

There exists homotopy 𝐹 ∶ 𝑋 × 𝐼 → 𝑌 such that 𝐹 (𝑥, 0) = 𝑓 (𝑥) and 𝐹 (𝑥, 1) = 𝑓 ′(𝑥). We define
𝐺 ∶ 𝑋 × 𝐼 → 𝑌 such that 𝐺(𝑥, 𝑡) = 𝐹 (𝑥, 1 − 𝑡) ∀ 𝑡 ∈ [0, 1]. We have that 𝐺 is a homotopy between 𝑓 ′

and 𝑓 .

(iii) Let 𝑓, 𝑓 ′, 𝑓 ′′ ∶ 𝑋 → 𝑌 . Then, 𝑓 ≃ 𝑓 ′, 𝑓 ′ ≃ 𝑓 ′′ ⇒ 𝑓 ≃ 𝑓 ′′.

There exists 𝐹 ∶ 𝑋 × 𝐼 → 𝑌 such that 𝐹 (𝑥, 0) = 𝑓 (𝑥), 𝐹 (𝑥, 1) = 𝑓 ′(𝑥) and 𝐹 ′ ∶ 𝑋 × 𝐼 → 𝑌 such that
𝐹 ′(𝑥, 0) = 𝑓 ′(𝑥), 𝐹 ′(𝑥, 1) = 𝑓 ′′(𝑥). Define 𝐺 ∶ 𝑋 × 𝐼 → 𝑌 with

𝐺(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐹 (𝑥, 2𝑡) for 𝑡 ∈
[

0, 1
2

]

,

𝐹 ′(𝑥, 2𝑡 − 1) for 𝑡 ∈
[

1
2
, 1
]

.

We note that 𝐺 is well-defined and for 𝑡 = 1
2

, 𝐹 (𝑥, 2𝑡) = 𝑓 ′(𝑥) = 𝐹 ′(𝑥, 2𝑡− 1). Because 𝐺 is continuous

on the two closed subsets 𝑋 ×
[

0, 1
2

]

and 𝑋 ×
[1
2
, 1
]

of 𝑋 × 𝐼 , by Pasting Lemma, 𝐺 is continuous
throughout and the required homotopy.2
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1.2 Homotopy equivalence of spaces

Definition 4 Suppose ∃ 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑌 → 𝑋 ∋ 𝑔◦𝑓 ≃ id𝑋 , 𝑓◦𝑔 ≃ id𝑌 . Then we say that 𝑋 is
homotopically equivalent to 𝑌 , 𝑋 ≃ 𝑌 , or that 𝑋 and 𝑌 have the same homotopy type.

Observation 5 𝑋 ≈ 𝑌 ⇒ 𝑋 ≃ 𝑌

Proof. 𝑓−1 exists and is continuous. 𝑔 = 𝑓−1.

Remark 6 Converse is not true.

Counterexample. 𝑋 = ℝ2, 𝑌 = {(0, 0)}. 𝑋 ≉ 𝑌 since 𝑋 is not compact but 𝑌 is. Let 𝐹 ∶ ℝ2 × 𝐼 →
ℝ2;

(

𝑥 =
(

𝑥1, 𝑥2
)

, 𝑡
)

↦ (1 − 𝑡) 𝑥
[

𝑥 ∈ ℝ2, 𝑡 ∈ [0, 1]
]

. Then, 𝐹 (𝑥, 0) = id𝑋 and 𝐹 (𝑥, 1) = id𝑌 . So, there exists
a homotopy from id𝑋 to id𝑌 .

Alternatively, we define 𝑖 ∶ {(0, 0)} → ℝ2, (0, 0) ↦ (0, 0); 𝑐 ∶ ℝ2 → {(0, 0)} . Then 𝑖◦𝑐 ∶ ℝ2 → ℝ2; 𝑥 ↦
(0, 0) ∀𝑥 ∈ ℝ2 and 𝑐◦𝑖 ∶ {(0, 0)} → {(0, 0)} ; 𝑐◦𝑖 = id𝑌 .2

Definition 7 A path-connected space is called contractible is it is homotopically equivalent to a one-point space,
i.e., it has the same homotopy type as a point.

Observation 8 Any 2 maps 𝑓, 𝑔 ∶ 𝑋 → 𝑌 , where 𝑌 is contractible, are homotopic.

Proof. Let Y be contractible. So there should exist a homotopy 𝐻 ∶ 1𝑌 ≃ 𝑓𝑐 where 𝑓𝑐 ∶ 𝑌 → {𝑐} ⊆ 𝑌 .
Let 𝑋 be another space and we consider a map 𝑔 ∶ 𝑋 → 𝑌 . Then 𝐻◦𝑔 ∶ 𝑋 × 𝐼 → 𝑌 is a homotopy

between 𝑔 and the constant map 𝑓 ∶ 𝑋 → {𝑐} ⊆ 𝑌 . So every map 𝑔 ∶ 𝑋 → 𝑌 is homotopic to the constant
map 𝑓 . Since homotopy is an equivalent relation, this implies that all maps 𝑋 → 𝑌 are homotopic.2

Definition 9 A retraction is a map 𝑟 from a space 𝑋 to its subset 𝐴, such that 𝑟|𝐴 = id𝐴.
A deformation retraction is a homotopy 𝐹 ∶ 𝑋 × 𝐼 → 𝐴 ⊆ 𝑋 such that 𝐹 |𝐴,𝐼 = id𝐴. Here, additionally,

the map 𝐹 is continuous. The retract is said to be “relative 𝐴” or rel𝐴.

1.3 Homotopy between Paths

For a topological space 𝑋, a path is a map 𝜎 ∶ [0, 1] → 𝑋. A path is called a loop at 𝑥 ∈ 𝑋 if 𝜎(0) = 𝜎(1) = 𝑥.
Let 𝛼 and 𝛽 be paths from 𝑥 to 𝑦 in 𝑋. We say that 𝛼 is homotopic to 𝛽 relative to the endpoints (0, 1)

𝛼 ≃ 𝛽 rel(0, 1)

if ∃ 𝐹 ∶ 𝐼 × 𝐼 → 𝑋 ∋

𝐹 (𝑠, 0) = 𝛼(𝑠) ∀ 𝑠 ∈ 𝐼 ;
𝐹 (𝑠, 1) = 𝛽(𝑠) ∀ 𝑠 ∈ 𝐼 ;

𝐹 (0, 𝑡) = 𝛼(0) = 𝛽(0) = 𝑥 ∀ 𝑡 ∈ 𝐼 ;
𝐹 (1, 𝑡) = 𝛼(1) = 𝛽(1) = 𝑦 ∀ 𝑡 ∈ 𝐼.

We define 𝐹𝑡 ∶ 𝐼 → 𝑋; 𝐹𝑡(𝑠) = 𝐹 (𝑠, 𝑡) for each fixed 𝑡 ∈ 𝐼 . Therefore, 𝐹𝑡 is also a path from 𝑥 to 𝑦. Thus,
homotopy can be seen as kind of a continuous deformation of path 𝛼 to path 𝛽.

We define 𝑃 (𝑋; 𝑥, 𝑦) = {𝛼 ∶ 𝐼 → 𝑋 | 𝛼(0) = 𝑥, 𝑎(1) = 𝑦}. “Being homotopic” is an equivalence relation
on 𝑃 (𝑋; 𝑥, 𝑦) because

(i) Consider 𝐹 (𝑠, 𝑡) = 𝛼(𝑠)∀ 𝑠, 𝑡 ∈ 𝐼 which shows that 𝛼 ≃ 𝛼 rel(0, 1), i.e., reflexivity.

(ii) If 𝐹 ∶ 𝛼 ≃ 𝛽 rel(0, 1) then 𝐺 ∶ 𝐼 × 𝐼 → 𝑋; 𝐺(𝑠, 𝑡) = 𝐹 (𝑠, 1 − 𝑡) gives 𝐺 ∶ 𝛽 ≃ 𝛼 rel(0, 1). Symmetry.

(iii) If we have 𝐹 ∶ 𝛼 ≃ 𝛽 rel(0, 1) and 𝐺 ∶ 𝛽 ≃ 𝛾 rel(0, 1), then we define the concatination of 𝐹 and 𝐺 by

(𝐹 ∗ 𝐺)(𝑠, 𝑡) =

{

𝐹 (𝑠, 2𝑡) for 0 ≤ 𝑡 ≤ 1
2 ;

𝐺(𝑠, 2𝑡 − 1) for 1
2
≤ 𝑡 ≤ 1.

which is continuous by the pasting lemma, whence 𝐹 ∗ 𝐺 ∶ 𝛼 ≃ 𝛾 rel(0, 1). Transitivity.

Note 10 Concatination refers to basically traversing the first path in half the time with double speed, and then
the second path in the other half of the time with double speed.
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1.4 Fundamental Group

The equivalence class of 𝛼 ∈ 𝑃 (𝑋; 𝑥, 𝑦) is denoted by [𝛼] by [𝛼] =
{

𝛼′ ∈ 𝑃 (𝑋; 𝑥, 𝑦) | 𝛼 ≃ 𝛼′ rel(0, 1)
}

. The
set of all such equivalence classes is denoted by 𝑃 [𝑋; 𝑥, 𝑦]. Let’s divert our discussion to loops at a point,
say, 𝑥0. We denote 𝑃

[

𝑋; 𝑥0, 𝑥0
]

by 𝜋1
(

𝑋, 𝑥0
)

≔
{

[𝜎] | 𝜎 is a loop at 𝑥0 ∈ 𝑋
}

. We define a binary operation
[∗] ∶ 𝜋1

(

𝑋, 𝑥0
)

× 𝜋1
(

𝑋, 𝑥0
)

→ 𝜋1
(

𝑋, 𝑥0
)

; [𝜎][∗][𝜏] ↦ [𝜎 ∗ 𝜏], where concatination 𝜎 ∗ 𝜏 ∶ 𝐼 → 𝑋 is
defined in our old way:

𝜎 ∗ 𝜏(𝑠) =

{

𝜎(2𝑠) when 0 ≤ 𝑠 ≤ 1
2
;

𝜏(2𝑠 − 1) when 1
2 ≤ 𝑠 ≤ 1.

The operation [∗] is well-defined, i.e., it does not depend on the choice of representatives 𝜎 and 𝜏. If 𝜎 ≃
𝜎′ rel(0, 1) and 𝜏 ≃ 𝜏′ rel(0, 1) then 𝜎 ∗ 𝜏 ≃ 𝜎′ ∗ 𝜏′ rel(0, 1). Now we observe that

(i) Of course, concatination gives another loop, and hence its equivalence class gives an element of𝜋1
(

𝑋, 𝑥0
)

.

(ii) ∗ is associative and hence so is [∗].

(ii) [𝑒] is the unit in 𝜋1
(

𝑋, 𝑥0
)

where 𝑒 ∶ 𝐼 → 𝑋; 𝑒(𝑠) = 𝑥0 ∀ 𝑠 ∈ 𝐼 , the constant loop at 𝑥0.

(iii) We observe that 𝜎−1(𝑠) = 𝜎(1 − 𝑠); [𝜎]−1 =
[

𝜎−1] where 𝜎 ∗ 𝜎−1 ≃ 𝜎−1 ∗ 𝜎 ≃ 𝑒 rel(0, 1).

We conclude that 𝜋1
(

𝑋, 𝑥0
)

forms a group with [∗] as a binary operation, known as the fundamental group.
If 𝑥1 ∈ 𝑋 is another point in 𝑋 then 𝜋1

(

𝑋, 𝑥1
)

makes sense.

Theorem 11 If 𝑋 is path-connected then a path 𝛼 from 𝑥0 to 𝑥1 induces an isomorphism 𝛼∗ from 𝜋1
(

𝑋, 𝑥0
)

to 𝜋1
(

𝑋, 𝑥1
)

by

𝛼∗ ∶ 𝜋1
(

𝑋, 𝑥0
)

→ 𝜋1
(

𝑋, 𝑥1
)

;
[𝜎] ↦

[

𝛼−1 ∗ 𝜎 ∗ 𝛼
]

; describe 𝛼−1, loop 𝜎, return to 𝑥1.

To check that 𝛼∗ is a well-defined isomorphism, we need to show that

(i) 𝛼∗ ([𝜎] [𝜏]) = 𝛼∗ ([𝜎]) 𝛼∗ ([𝜏]) ;

(ii)
(

𝛼∗
)−1 =

(

𝛼−1
)

∗.

Because the operation ∗ is well-defined, if 𝜎 is a loop based at 𝑥0, then 𝛼−1 ∗ (𝜎 ∗ 𝛼) is a loop based at 𝑥1. To
show 𝛼∗ to be a group isomorphism, we need

𝛼∗ ([𝜎]) 𝛼∗ ([𝜏]) =
([

𝛼−1 ∗ 𝜎 ∗ 𝛼
]) ([

𝛼−1 ∗ 𝜏 ∗ 𝜎
])

=
[

𝛼−1 ∗ 𝜎 ∗ 𝛼 ∗ 𝛼−1 ∗ 𝜏 ∗ 𝜎
]

=
[

𝛼−1
]

[𝜎 ∗ 𝜏] [𝛼]
= 𝛼∗ ([𝜎] [𝜏]) .

Let 𝛽 denote the path 𝛼−1, then 𝛽∗ is the inverse for 𝛼∗. For each [𝜎] ∈ 𝜋1
(

𝑋, 𝑥1
)

, 𝛽∗ ([𝜎]) =
[

𝛽−1 ∗ 𝜎 ∗ 𝛽
]

=
[

𝛼 ∗ 𝜎 ∗ 𝛼−1
]

⇒ 𝛼∗
(

𝛽∗ [𝜎]
)

=
[

𝛼−1 ∗ 𝛼 ∗ 𝜎 ∗ 𝛼−1 ∗ 𝛼
]

= [𝜎]. Similarly 𝛽∗
(

𝛼∗ [𝜎]
)

= [𝜎] for all [𝜎] ∈
𝜋1

(

𝑋, 𝑥0
)

.
Moreover, if 𝛼 ≃ 𝛽 rel(0, 1) for 𝛼, 𝛽 ∈ 𝑃

[

𝑋; 𝑥0, 𝑥1
]

, then 𝛼∗ = 𝛽∗.
Thus, it makes sense to talk about the fundamental group of a space, irrespective of the base point.

1.5 Homotopy groups

Let 𝑓 ∶ 𝑋 → 𝑌 , and [𝑓 ] be the equivalence class containing 𝑓 , called its homotopy class. The collection
of all homotopy classes 𝑋 → 𝑌 is denoted by [𝑋, 𝑌 ]. In the set 𝜋𝑛(𝑋) = [𝑆𝑛, 𝑋], we can similarly define a
binary operation for 𝑓, 𝑔 ∶ 𝑆𝑛 → 𝑋,
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(𝑓𝑔)
(

𝑠1,… , 𝑠𝑛
)

=

⎧

⎪

⎨

⎪

⎩

𝑓
(

2𝑠1, 𝑠2,… , 𝑠𝑛
)

, 𝑠1 ∈
[

0, 12
]

,

𝑔
(

2𝑠1 − 1, 𝑠2,… , 𝑠𝑛
)

, 𝑠1 ∈
[

1
2 , 1

]

.

The identity will be the class of the constant map to the base point, and−𝑓
(

𝑠1, 𝑠2,… , 𝑠𝑛
)

= 𝑓
(

1 − 𝑠1, 𝑠2,… , 𝑠𝑛
)

.
This group 𝜋𝑛(𝑋) is called the 𝑛th (ordinary) homotopy group of 𝑋. In fact, for 𝑛 ≥ 2 they are all abelian.

1.6 Homotopy extension property

2 Cell complexes

2.1 Weak Topology

Let 𝑋 be a topological space and let 𝑊𝛼, 𝛼 ∈ 𝐴 be subsets of 𝑋 that in themselves are topological spaces.
A weak topology on 𝑋 is the largest topology such that the inclusion map 𝑊𝛼 ↪ 𝑋 is continuous for each
𝛼 ∈ 𝐴. Equivalently, a subset 𝑈 of 𝑋 is open iff 𝑈 ∩ 𝑊𝛼 ⊆ 𝑊𝛼 is open for each 𝛼 ∈ 𝐴. The collection
{

𝑈 ⊆ 𝑋 | 𝑈 ∩𝑊𝛼 ⊆open 𝑊𝛼 ∀ 𝛼 ∈ 𝐴
}

forms a topology on 𝑋, and every other topology that has the inclusion
maps continuous, is contained in this weak topology.

Given
{

𝑊𝛼
}

𝛼∈𝐴 we can, if they are not disjoint, consider homeomorphic spaces that are disjoint, and take
disjoint union

∐

𝛼∈𝐴
𝑊𝛼 = 𝑋, on which we can consider the weak topology.

2.2 Identification maps

2.3 Adjunction spaces

Let 𝑋 and 𝑌 be unbased topological spaces. We consider 𝑊 ⊂ 𝑋 and let 𝜑 ∶ 𝑊 → 𝑌 be a free map, i.e., a
map which need not map base point to base point. On 𝑌 ⊔ 𝑋 we define the equivalence relation 𝑤 ∼ 𝜑(𝑤).
This gives us the identification space 𝑌 ∪𝜑 𝑋, called the adjunction space.

2.4 Wedge

Let
(

𝑋𝛼, 𝑥𝛼
)

; 𝛼 ∈ 𝐴 be based spaces. When we quotient the disjoint union
∐

𝑋𝛼 by
{

𝑥𝛼 | 𝛼 ∈ 𝐴
}

, we
basically identify all the base points into one, and this gives us the wedge of

{(

𝑋𝛼, 𝑥𝛼
)}

𝛼∈𝐴, denoted as
⋁

𝛼∈𝐴
𝑋𝛼.

2.5 CW complexes

Note that for each 𝛼 ∈ 𝐴, there is an injection 𝑖𝛼 ∶ 𝑋𝛼 →
⋁

𝛼∈𝐴
𝑋𝛼; 𝑥 ↦ [𝑥] ∀ 𝑥 ∈ 𝑋𝛼. Furthermore, the

maps 𝑓𝛼 ∶ 𝑋𝛼 → 𝑌 determine a unique map 𝑓 ∶
⋁

𝛼∈𝐴
𝑋𝛼 → 𝑌 ∋ 𝑓𝑖𝛼 = 𝑓𝛼.

If we consider 𝑋 to be an unbased space and assume 𝜑𝛼 ∶ 𝑆𝑛−1 = 𝑆𝑛−1
𝛼 → 𝑋 to be free maps for 𝛼 ∈ 𝐴,

these determine a free map (by pasting lemma) 𝜑 ∶
∐

𝛼∈𝐴
𝑆𝑛−1
𝛼 → 𝑋. Let 𝐸𝑛−1

𝛼 = 𝐸𝑛 for all 𝛼 ∈ 𝐴. Since
∐

𝛼∈𝐴
𝑆𝑛−1
𝛼 ⊂

∐

𝛼∈𝐴
𝐸𝑛
𝛼 , we can form the adjunction space by quotienting with respect to

∐

𝛼∈𝐴
𝑆𝑛−1
𝛼 as: 𝑋∪𝛼∈𝐴

∐

𝛼∈𝐴
𝐸𝑛
𝛼 .

This procedure is called attaching 𝑛-cells.
We consider an unbased Hausdorff topological space 𝑋, which we construct as follows: we consider a chain

of subsets 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ ⋯ ⊆ 𝑋𝑛−1 ⊆ 𝑋𝑛 ⊆ ⋯ ⊆ 𝑋, which we construct by considering 𝑋0 as a 0-cell
or consisting of discrete vertices, and attaching 𝑛-cells to 𝑋𝑛−1 to form 𝑋𝑛. We have to assume that for each
𝑛, there exist attaching maps 𝜑𝛽 ∶ 𝑆𝑛−1 → 𝑋𝑛−1; 𝛽 ∈ 𝐵 and we thus form 𝑋𝑛 ≔ 𝑋𝑛−1 ∪𝜑

∐

𝛽∈𝐵
𝐸𝑛
𝛼 . Note that

with each such formation of the disjoint union 𝑋𝑛−1 ⊔
∐

𝛽∈𝐵
𝐸𝑛
𝛼 and subsequent quotienting, for each 𝛽 ∈ 𝐵,
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we get a continuous characteristic function Φ𝛽 ∶
(

𝐸𝑛, 𝑆𝑛−1) →
(

𝑋𝑛, 𝑋𝑛−1) and Φ|𝑆𝑛−1
𝛽

= 𝜑𝛽 . The image

Φ𝛽

(

𝐸𝑛
𝛽 − 𝑆𝑛−1

𝛽

)

= 𝑒𝑛𝛽 is called an open 𝑛-cell (although it need not be open in𝑋, andΦ𝛽|𝐸𝑛
𝛽−𝑆

𝑛−1
𝛽

∶ 𝐸𝑛
𝛽−𝑆

𝑛−1
𝛽 →

𝑒𝑛𝛽 is a homeomorphism. The closure of 𝑒𝑛𝛽 is Φ𝛽

(

𝐸𝑛
𝛽

)

and the topological boundary 𝜕𝑒𝑛𝛽 = Φ𝛽

(

𝑆𝑛−1
𝛽

)

. Then

Φ𝛽 ∶
(

𝐸𝑛, 𝑆𝑛−1) →
(

𝑒𝑛𝛽 , 𝜕𝑒
𝑛
𝛽

)

is a continuous function of pairs. This closed set 𝑒𝑛𝛽 = Φ (𝐸𝑛) ⊆ 𝑋𝑛 ⊆ 𝑋 is
called a (closed) 𝑛-cell that is being attached. 𝑋 as a whole is endowed with the weak topology with respect
to all the closed cells

{

𝑒𝑛𝛽
}

𝛽∈𝐵,𝑛∈ℕ∪{0}
. Here, 𝑋𝑛 − 𝑋𝑛−1 is a disjoint union of the 𝑒𝑛𝛽 and we can write 𝑋𝑛 =

𝑋𝑛−1 ∪
⋃

𝛽∈𝐵
𝑒𝑛𝛽 or 𝑋𝑛 = 𝑋𝑛−1 ∪

⋃

𝛽∈𝐵
𝑒𝑛𝛽 .

A CW complex is called finite if it has finitely many cells, and is called finite-dimensional (dimension 𝑁)
if there exists 𝑁 ∈ ℕ such that 𝑋𝑁−1 ≠ 𝑋 but 𝑋𝑛 = 𝑋 for all 𝑛 ≥ 𝑁 .
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